Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(21): 8038-8049, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37196215

ABSTRACT

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an essential regulatory target of antioxidants, but the lack of Nrf2 active site information has hindered discovery of new Nrf2 agonists from food-derived compounds by large-scale virtual screening. Two deep-learning models were separately trained to screen for Nrf2-agonists and safety. The trained models screened potentially active chemicals from approximately 70,000 dietary compounds within 5 min. Of the 169 potential Nrf2 agonists identified via deep-learning screening, 137 had not been reported before. Six compounds selected from the new Nrf2 agonists significantly increased (p < 0.05) the activity of Nrf2 on carbon tetrachloride (CCl4)-intoxicated HepG2 cells (nicotiflorin (99.44 ± 18.5%), artemetin (97.91 ± 8.22%), daidzin (87.73 ± 3.77%), linonin (74.27 ± 5.73%), sinensetin (72.74 ± 10.41%), and tectoridin (77.78 ± 4.80%)), and their safety were demonstrated by an MTT assay. The safety and Nrf2 agonistic activity of nicotiflorin, artemetin, and daidzin were also reconfirm by a single-dose acute oral toxicity study and CCl4-intoxicated rat assay.


Subject(s)
Deep Learning , NF-E2-Related Factor 2 , Rats , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidants/chemistry , Diet , Carbon Tetrachloride/metabolism , Oxidative Stress , Liver/metabolism
2.
Neural Regen Res ; 16(3): 573-579, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32985490

ABSTRACT

Epidural electrical stimulation can restore limb motor function after spinal cord injury by reactivating the surviving neural circuits. In previous epidural electrical stimulation studies, single electrode sites and continuous tetanic stimulation have often been used. With this stimulation, the body is prone to declines in tolerance and locomotion coordination. In the present study, rat models of complete spinal cord injury were established by vertically cutting the spinal cord at the T8 level to eliminate disturbance from residual nerve fibers, and were then subjected to epidural electrical stimulation. The flexible extradural electrode had good anatomical topology and matched the shape of the spinal canal of the implanted segment. Simultaneously, the electrode stimulation site was able to be accurately applied to the L2-3 and S1 segments of the spinal cord. To evaluate the biocompatibility of the implanted epidural electrical stimulation electrodes, GFAP/Iba-1 double-labeled immunofluorescence staining was performed on the spinal cord below the electrodes at 7 days after the electrode implantation. Immunofluorescence results revealed no significant differences in the numbers or morphologies of microglia and astrocytes in the spinal cord after electrode implantation, and there was no activated Iba-1+ cell aggregation, indicating that the implant did not cause an inflammatory response in the spinal cord. Rat gait analysis showed that, at 3 days after surgery, gait became coordinated in rats with spinal cord injury under burst stimulation. The regained locomotion could clearly distinguish the support phase and the swing phase and dynamically adjust with the frequency of stimulus distribution. To evaluate the matching degree between the flexible epidural electrode (including three stimulation contacts), vertebral morphology, and the level of the epidural site of the stimulation electrode, micro-CT was used to scan the thoracolumbar vertebrae of rats before and after electrode implantation. Based on the experimental results of gait recovery using three-site stimulation electrodes at L2-3 and S1 combined with burst stimulation in a rat model of spinal cord injury, epidural electrical stimulation is a promising protocol that needs to be further explored. This study was approved by the Animal Ethics Committee of Chinese PLA General Hospital (approval No. 2019-X15-39) on April 19, 2019.

3.
Neural Regen Res ; 13(3): 518-527, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29623939

ABSTRACT

Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury, but the mechanisms remain poorly understood. In this study, we examined mice with spinal cord injury. Gene expression profiles from the Gene Expression Omnibus database (accession number GSE93561) were used, including spinal cord samples from 3 young injured mice (2-3-months old, induced by Impactor at Th9 level) and 3 control mice (2-3-months old, no treatment), as well as 2 aged injured mice (15-18-months old, induced by Impactor at Th9 level) and 2 control mice (15-18-months old, no treatment). Differentially expressed genes (DEGs) in spinal cord tissue from injured and control mice were identified using the Linear Models for Microarray data method, with a threshold of adjusted P < 0.05 and |logFC(fold change)| > 1.5. Protein-protein interaction networks were constructed using data from the STRING database, followed by module analysis by Cytoscape software to screen crucial genes. Kyoto encyclopedia of genes and genomes pathway and Gene Ontology enrichment analyses were performed to investigate the underlying functions of DEGs using Database for Annotation, Visualization and Integrated Discovery. Consequently, 1,604 and 1,153 DEGs were identified between injured and normal control mice in spinal cord tissue of aged and young mice, respectively. Furthermore, a Venn diagram showed that 960 DEGs were shared among aged and young mice, while 644 and 193 DEGs were specific to aged and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in osteoclast differentiation, extracellular matrix-receptor interaction, nuclear factor-kappa B signaling pathway, and focal adhesion. Unique genes for aged and young injured groups were involved in the cell cycle (upregulation of PLK1) and complement (upregulation of C3) activation, respectively. These findings were confirmed by functional analysis of genes in modules (common, 4; aged, 2; young, 1) screened from protein-protein interaction networks. Accordingly, cell cycle and complement inhibitors may be specific treatments for spinal cord injury in aged and young mice, respectively.

4.
J Orthop Surg Res ; 11(1): 124, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27765057

ABSTRACT

BACKGROUND: A die-punch fracture is a depression fracture of the lunate fossa of the distal radius. We propose a morphological classification of die-punch fractures that includes five types: center depression fractures, vertical depression fractures, volar depression fractures, dorsal depression fractures, and double die-punch fractures. METHODS: The radiographs of 112 die-punch fractures treated between January 2005 and January 2015 were retrospectively reviewed. The clinical images were examined independently for two rounds by six orthopedists with different clinical experiences: two residents, two attending physicians, and two consultants. A category-specific kappa score and a kappa score for more than two observers were analyzed. We used Cohen's kappa to test intraobserver variation. RESULTS: The kappa score for interobserver reliability was 0.69 for the first round and 0.70 for the second round. The intraclass correlations were 0.65 and 0.63, respectively. Intraobserver reproducibility using Cohen's kappa test was satisfactory. All of the results indicated a kappa value >0.4, suggesting good agreement within, as well as between, observers. CONCLUSIONS: The outcome was assessed using kappa statistics, which showed good interobserver reliability and intraobserver reproducibility.


Subject(s)
Radius Fractures/classification , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Observer Variation , Radius Fractures/diagnostic imaging , Statistics as Topic , Young Adult
5.
Chin Med J (Engl) ; 129(5): 557-61, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26904990

ABSTRACT

BACKGROUND: The treatment for long bone defects has been a hot topic in the field of regenerative medicine. This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich plasma (PRP) on long bone defect restoration. METHODS: A radial bone defect model was constructed through an osteotomy using New Zealand rabbits. The rabbits were randomly divided into four groups (n = 10 in each group): a CS combined with PRP (CS-PRP) group, a CS group, a PRP group, and a positive (recombinant human bone morphogenetic protein-2) control group. PRP was prepared from autologous blood using a two-step centrifugation process. CS-PRP was obtained by mixing hemihydrate CS with PRP. Radiographs and histologic micrographs were generated. The percentage of bone regenerated bone area in each rabbit was calculated at 10 weeks. One-way analysis of variance was performed in this study. RESULTS: The radiographs and histologic micrographs showed bone restoration in the CS-PRP and positive control groups, while nonunion was observed in the CS and PRP groups. The percentages of bone regenerated bone area in the CS-PRP (84.60 ± 2.87%) and positive control (52.21 ± 4.53%) groups were significantly greater than those in the CS group (12.34 ± 2.17%) and PRP group (16.52 ± 4.22%) (P < 0.001). In addition, the bone strength of CS-PRP group (43.10 ± 4.10%) was significantly greater than that of the CS group (20.10 ± 3.70%) or PRP group (25.10 ± 2.10%) (P < 0.001). CONCLUSION: CS-PRP functions as an effective treatment for long bone defects through stimulating bone regeneration and enhancing new bone strength.


Subject(s)
Bone Regeneration/drug effects , Calcium Sulfate/pharmacology , Platelet-Rich Plasma , Animals , Male , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...