Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 31(3): 853-862, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32537981

ABSTRACT

To explore the effects of future climate change on food production in Henan Province, the climate potential productivity and its change characteristics in Henan Province were calculated by agro-ecological zone (AEZ) model. This study was based on the production potential and climate resource carrying capacity of summer maize and winter wheat, combined with the observation data of 111 meteorological stations in Henan Province from 1961 to 2017 and the meteorological data under two emission scenarios of RCP4.5 and RCP8.5 in 2041-2080. With the grain demand index under different living standards, we analyzed climate carrying capacity and surplus space of Henan Pro-vince. The results showed that the average climatic potential productivity of maize was 18408.87 kg·hm-2 from 1961 to 2017, with high values in the middle and east, and low values in the west. Compared with the reference period (1981-2010), climatic potential productivity of maize under RCP4.5 and RCP8.5 decreased by 13.0% and 8.0% respectively, with the high value center shifting from the east to the southwest of Henan. The average climatic potential productivity of wheat was 10889.79 kg·hm-2, which was high in the middle region and low in the north. Compared with the reference period, climatic potential productivity of wheat under RCP4.5 and RCP8.5 decreased by 18.6% and 21.7%, respectively. Under the current condition of subsistence and well-off food demand, the maximum carrying capacity of climate resources respectively could support 252 million and 183 million people. In 2070s (2071-2080), the average supporting population of the maximum climate resource carrying capacity (Cmax) would decrease. Compared with the reference period, Cmax under the level of well-off and subsistence would decrease by 9.7% and 18.4% respectively in RCP4.5 scenario, and 7.7% and 16.6% respectively in RCP8.5 scenario. Under current climate condition, the relative surplus rate of climate resources in Henan Province ranged from -93.0% to 356.9%. Compared with the reference period, the relative residual rate of climate resources in the future would reduce nearly 40%.


Subject(s)
Climate Change , Food Supply , China , Forecasting , Zea mays
2.
Ying Yong Sheng Tai Xue Bao ; 26(9): 2689-99, 2015 Sep.
Article in Chinese | MEDLINE | ID: mdl-26785550

ABSTRACT

Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.


Subject(s)
Agriculture , Climate Change , Triticum/physiology , Water , China , Environment , Forecasting , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...