Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32260, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882349

ABSTRACT

Programmed death-1 (PD-1) acts as a T cell checkpoint and is important in controlling T cell exhaustion. Blocking the intercommunication across PD-1 and PD-L1 is promising for advanced lung cancer treatment. However, the response rate requires being strengthened. This study aimed to determine whether the combination treatment of Qingfei mixture (QFM) and PD-1 inhibitor could improve the sensitivity of monoclonal antibody by regulating STAT1/IDO1-mediated tryptophan (Trp)-kynurenine (Kyn) pathway. The in vivo imaging system, immunofluorescence, hematoxylin-eosin staining, TUNEL, flow cytometry, HPLC, and ELISA were used to estimate the anti-tumor effects in LLC-luc tumor-bearing C57BL/6 mice treated with QFM, PD-1 inhibitor, 2-NP (enhancer of STAT1 transcription), and FICZ (AhR agonist) alone or in combination. IFN-γ-mediated A549 and LLC cells were treated with QFM-containing serum and fludarabine (FLU, STAT1 inhibitor), and cell viability, apoptosis, and Kyn content were then evaluated using CCK-8 assays, flow cytometry, and HPLC assays, respectively. Additionally, the expressions of STAT1, IDO1, AhR, NFATc1, TRIP12, PD-1, and PD-L1 were measured in vivo and in vitro. We found QFM increased the anti-cancer actions of PD-1 inhibitors by increasing the CD8+IFNγ+ T cells infiltration and decreasing the ratio of Kyn/Trp. Besides, QFM-containing serum suppressed the proliferation and promoted apoptosis in A549 and LLC cells, meanwhile, FLU boosted the effects of QFM-containing serum. Moreover, the suppression of tumor growth in the combination therapy was attenuated in the mice receiving 2-NP or FICZ. The occurrence of the above results was accompanied by a decrease in STAT1, IDO1, AhR, PD-1, and PD-L1 expressions. Collectively, the findings suggested that QFM may increase the influences of PD-1 inhibitors at least partially by blocking the STAT1/IDO1-mediated tryptophan-kynurenine pathway in lung cancer.

2.
Heliyon ; 10(8): e29404, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660245

ABSTRACT

Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.

4.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403323

ABSTRACT

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Gefitinib/pharmacology , 1-Butanol , bcl-2-Associated X Protein , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
6.
Prog Neurobiol ; 230: 102514, 2023 11.
Article in English | MEDLINE | ID: mdl-37574039

ABSTRACT

Vascular cognitive impairment (VCI) due to chronic cerebral hypoperfusion (CCH), is the second leading cause of dementia. Although synaptic impairment plays a critical role in VCI, its exact mechanism remains unknown. Our previous research revealed that remote ischemic conditioning (RIC) could alleviate cognitive decline resulting from CCH, however, its effects on synaptic impairment remain unclear. In this study, we confirmed that RIC alleviated both cognitive decline and its associated synaptic dysfunction caused by CCH. RNA sequencing revealed that CCH increased in miR-218a-5p expression, which was decreased by RIC. Elevated miR-218a-5p levels limited the benefits of RIC, however, inhibiting miR-218a-5p in hippocampal CA1 neurons rescued synaptic dysfunction. Additionally, we found that SHANK2 is a downstream target of miR-218a-5p, and inhibiting SHANK2 expression reduced the alleviation caused by hypoxic conditioning in synaptic impairment in vitro. In conclusion, our results suggested that RIC alleviated synaptic impairment via the miR-218a-5p/SHANK2 pathway, which could be a potential biomarker or therapeutic target for cognitive impairment caused by CCH.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , MicroRNAs , Humans , Brain Ischemia/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , MicroRNAs/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
7.
Acta Pharmacol Sin ; 44(8): 1600-1611, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36973542

ABSTRACT

Epilepsy is one common brain disorder, which is not well controlled by current pharmacotherapy. In this study we characterized the therapeutic potential of borneol, a plant-derived bicyclic monoterpene compound, in the treatment of epilepsy and elucidated the underlying mechanisms. The anti-seizure potency and properties of borneol were assessed in both acute and chronic mouse epilepsy models. Administration of (+)-borneol (10, 30, 100 mg/kg, i.p.) dose-dependently attenuated acute epileptic seizure in maximal-electroshock seizure (MES) and pentylenetetrazol (PTZ)-induced seizure models without obvious side-effect on motor function. Meanwhile, (+)-borneol administration retarded kindling-induced epileptogenesis and relieved fully kindled seizures. Importantly, (+)-borneol administration also showed therapeutic potential in kainic acid-induced chronic spontaneous seizure model, which was considered as a drug-resistant model. We compared the anti-seizure efficacy of 3 borneol enantiomers in the acute seizure models, and found (+)-borneol being the most satisfying one with long-term anti-seizure effect. In electrophysiological study conducted in mouse brain slices containing the subiculum region, we revealed that borneol enantiomers displayed different anti-seizure mechanisms, (+)-borneol (10 µM) markedly suppressed the high frequency burst firing of subicular neurons and decreased glutamatergic synaptic transmission. In vivo calcium fiber photometry analysis further verified that administration of (+)-borneol (100 mg/kg) inhibited the enhanced glutamatergic synaptic transmission in epilepsy mice. We conclude that (+)-borneol displays broad-spectrum anti-seizure potential in different experimental models via decreasing the glutamatergic synaptic transmission without obvious side-effect, suggesting (+)-borneol as a promising anti-seizure compound for pharmacotherapy in epilepsy.


Subject(s)
Epilepsy , Kindling, Neurologic , Mice , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/chemically induced , Epilepsy/drug therapy , Camphanes/therapeutic use , Camphanes/pharmacology , Kindling, Neurologic/physiology , Seizures/chemically induced , Seizures/drug therapy , Disease Models, Animal
8.
J Ethnopharmacol ; 307: 116198, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36690307

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qingyihuaji Formula (QYHJ), a widely used traditional Chinese medicine (TCM), has been used to treat patients with cancer in China. However, the effect and mechanism of QYHJ on pancreatic ductal adenocarcinoma (PDAC) remains unclear. AIM OF THE STUDY: This study aimed to explore the roles and evaluate the possible underlying molecular mechanisms of QYHJ and its core component in PDAC using label-free quantitative proteomics in conjunction with network pharmacology-based analysis. MATERIALS AND METHODS: By screening differentially expressed proteins (DEPs) in proteomics and QYHJ-predicted gene sets, we identified QYHJ-related PDAC targets annotated with bioinformatic analysis. A subcutaneous tumor model was established to assess the role of QYHJ in vivo. The effects of quercetin (Que), a core component of QYHJ, on cell proliferation, migration, invasion, apoptosis, and autophagy in SW1990 and PANC-1 cells were investigated in vitro. Immunohistochemistry, western blotting, mRFP-GFP-LC3 adenovirus, and kinase analysis were used to determine the underlying mechanisms. RESULTS: Bioinformatics analysis revealed that 41 QYHJ-related PDAC targets were closely related to the cellular response to nitrogen compounds, positive regulation of cell death, regulation of epithelial cell apoptotic processes, and chemokine signaling pathways. CASP3, SRC, STAT1, PTPN11, PKM, and PAK1 with high expression were identified as hub DEPs in the PPI network, and these DEPs were associated with poor overall survival and STAT 1, MAPK/ERK, and PI3K/Akt/mTOR signaling pathways in PDAC patients. QYHJ significantly promoted tumor death in nude mice. Moreover, quercetin inhibited the proliferation, migration, and invasion of PDAC cells. Additionally, Que induced apoptosis and autophagy in PDAC cells. Mechanistically, QYHJ and Que significantly activated STAT 1 and remarkably inhibited the MAPK/ERK and PI3K/Akt/mTOR signaling pathways in vivo and in vitro, respectively. Importantly, ERK1/2 inactivation contributes to que-induced apoptosis in SW1990 and PANC-1 cells. CONCLUSIONS: These results suggest that QYHJ and Que are promising anti-PDAC avenues that benefit from their multiform mechanisms.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Quercetin/pharmacology , Signal Transduction , Pancreatic Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Cell Proliferation , Autophagy , Cell Line, Tumor , Pancreatic Neoplasms
9.
Ecotoxicol Environ Saf ; 249: 114456, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321675

ABSTRACT

Recent studies have shown a strong correlation between ambient fine particulate matter (PM2.5) exposure and diabetes risk, including abnormal lipid accumulation and systemic insulin resistance (IR). Hawthorn total flavonoids (HF) are the main groups of active substances in Hawthorn, which showed anti-hyperlipidemic and anti-hyperglycemic effects. Therefore, we hypothesized that HF may attenuate PM2.5-induced IR and abnormal lipid accumulation. Female C57BL/6 N mice were randomly assigned to the filtered air exposure (FA) group, concentrated PM2.5 exposure (PM) group, PM2.5 exposure maintained on a low-dose HF diet (LHF) group, and PM2.5 exposure maintained on a high-dose HF diet (HHF) group for an 8-week PM2.5 exposure using a whole-body exposure device. Body glucose homeostasis, lipid profiles in the liver and serum, and enzymes responsible for hepatic lipid metabolism were measured. We found that exposure to PM2.5 impaired glucose tolerance and insulin sensitivity. In addition, triacylglycerol (TAG) in serum elevated, whereas hepatic TAG levels were decreased after PM2.5 exposure, accompanied by inhibited fatty acid uptake, lipogenesis, and lipolysis in the liver. HF administration, on the other hand, balanced the hepatic TAG levels by increasing fatty acid uptake and decreasing lipid export, leading to alleviated systemic IR and hyperlipidemia in PM2.5-exposed mice. Therefore, HF administration may be an effective strategy to protect against PM2.5-induced IR and metabolic abnormalities of lipids.


Subject(s)
Air Pollutants , Crataegus , Insulin Resistance , Female , Animals , Mice , Particulate Matter , Flavonoids , Mice, Inbred C57BL , Lipids , Fatty Acids
10.
Front Pharmacol ; 13: 914597, 2022.
Article in English | MEDLINE | ID: mdl-36060011

ABSTRACT

Cancer cachexia is a complex syndrome that leads to an ongoing loss of skeletal muscle mass in many malignant tumors. Our previous studies have evaluated the effectiveness of Baoyuan Jiedu decoction (BJD) in alleviating cancer-induced muscle atrophy. However, the mechanisms of BJD regulating muscle atrophy could not be fully understood. Therefore, we further investigated the mechanisms of BJD mitigating muscle atrophy both in an Apc Min/+ mouse model and the Lewis-conditioned medium-induced C2C12 myotube atrophy model. We confirmed the quality of BJD extracts by HPLC. In an In vivo study, body weight loss and muscle atrophy were alleviated with BJD treatment. GO analysis suggested that ATP metabolism and mitochondria were involved. The results of the electron microscope show that BJD treatment may have a healing effect on mitochondrial structure. Moreover, ATP content and mitochondrial numbers were improved with BJD treatment. Furthermore, both in vivo and in vitro, we demonstrated that the BJD treatment could improve mitochondrial function owing to the increased number of mitochondria, balanced dynamic, and regulation of the electron transport chain according to the protein and mRNA expressions. In addition, oxidative stress caused by mitochondrial dysfunction was ameliorated by BJD treatment in Apc Min/+ mice. Consequently, our study provides proof for BJD treatment alleviating cancer cachexia-induced muscle atrophy by modulating mitochondrial function in Apc Min/+ mice.

11.
Front Pharmacol ; 13: 939483, 2022.
Article in English | MEDLINE | ID: mdl-36034815

ABSTRACT

Descurainia sophia seeds (DS), Astragalus mongholicus (AM), and their formulas are widely used to treat heart failure caused by various cardiac diseases in traditional Chinese medicine practice. However, the molecular mechanism of action of DS and AM has not been completely understood. Herein, we first used mass spectrometry coupled to UPLC to characterize the chemical components of DS and AM decoctions, then applied MS-based quantitative proteomic analysis to profile protein expression in the heart of rats with isoproterenol-induced cardiomyopathy (ISO-iCM) before and after treated with DS alone or combined with AM, astragaloside IV (AS4), calycosin-7-glucoside (C7G), and Astragalus polysaccharides (APS) from AM. We demonstrated for the first time that DS decoction alone could reverse the most of differentially expressed proteins in the heart of the rats with ISO-iCM, including the commonly recognized biomarkers natriuretic peptides (NPPA) of cardiomyopathy and sarcomeric myosin light chain 4 (MYL4), relieving ISO-iCM in rats, but AM did not pronouncedly improve the pharmacological efficiency of DS. Significantly, we revealed that AS4 remarkably promoted the pharmacological potency of DS by complementarily reversing myosin motor MYH6/7, and further downregulating NPPA and MYL4. In contrast, APS reduced the efficiency of DS due to upregulating NPPA and MYL4. These findings not only provide novel insights to better understanding in the combination principle of traditional Chinese medicine but also highlight the power of mass spectrometric proteomics strategy combined with conventional pathological approaches for the traditional medicine research.

12.
Clin Transl Med ; 12(6): e947, 2022 06.
Article in English | MEDLINE | ID: mdl-35735103

ABSTRACT

BACKGROUND: Accumulation of evidence suggests that the gut microbiome, its specific metabolites, and differentially expressed proteins (DEPs) are related to non-small cell lung cancer (NSCLC) pathogenesis. We now report the influences of the gut microbiota, metabolites, and DEPs on the mediation of NSCLC's chronic inflammation and immune dysregulation. METHODS: We conducted 16S ribosomal RNA sequencing for the gut microbiome in healthy volunteers and NSCLC patients. Liquid chromatography-mass spectrometry (LC-MS) analysis was employed to explore differences between metabolites and DEPs in serum samples. Additionally, LC-MS-based metabolomic analysis was conducted in 40 NSCLC tissues and 40 adjacent tissues. The omics data were separately analysed and integrated by using Spearman's correlation coefficient. Then, faecal microbiota transplantation (FMT) assay was used to assess the effects of the gut microbiome and specific metabolites in mice. RESULTS: Faecal microbiome analysis revealed gut microflora dysbiosis in NSCLC patients with Prevotella, Gemmiger, and Roseburia significantly upregulated at the genus level. Then, we identified that nervonic acid/all-trans-retinoic acid level was negatively related to Prevotella. Additionally, a total of core 8 DEPs were selected in the proteome analysis, which mainly participated in the production of IL-8 and NF-κB pathways. CRP, LBP, and CD14 were identified as potential biomarkers for NSCLC. Transplantation of faecal microbiota from patients with NSCLC or Prevotella copri-colonized recipient in mice resulted in inflammation and immune dysregulation. In turn, nervonic acid/all-trans-retinoic acid treatment improved the phenotype of C57BL/6 mice bearing P. copri-treated Lewis lung cancer (LLC). CONCLUSIONS: Overall, these results pointed out that P. copri-nervonic acid/all-trans-retinoic acid axis may contribute to the pathogenesis of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Microbiota , Animals , Bacteria/genetics , Humans , Inflammation , Metabolome , Mice , Mice, Inbred C57BL , Proteome/pharmacology , Tretinoin/pharmacology
13.
Article in English | MEDLINE | ID: mdl-34608398

ABSTRACT

Lung cancer remains the leading cause of cancer-related deaths worldwide. Traditional Chinese medicine (TCM) is a valuable resource of active natural products and plays an important role in cancer treatment with the advantages of high efficiency and safety. Wenxia Changfu formula (WCF) is modified from Dahuang Fuzi decoction from Han Dynasty and has been used for treating lung cancer in China. Our previous research showed that WCF had an antitumor effect in vivo and in vitro, while the mechanism has not been well illustrated. In this study, the effect of WCF on the proliferative ability in three lung cancer cells and one noncancerous human cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. WCF suppressed A549, H460, and PC-9 cell viability in a dose-dependent manner, with no inhibition of noncancerous MRC-5 cells after 48 h treatment with WCF (0-50 mg/mL). Furthermore, we screened for genes in A549 cells using four WCF-treated samples and four control samples on a gene expression profile microarray. 21 genes were significantly downregulated by WCF, which may potentially play an important role in the proliferation of A549 cells. High-content screening evaluated whether silencing the 21 genes affected A549 cell growth. The results showed that PIF1 knockdown exhibited the most potent inhibition of cell proliferation compared with the other genes. Downregulation of PIF1 increased A549 cell apoptosis and the activity of caspase 3/7. Besides, RT-PCR showed that the expression levels of PIF1 mRNA decreased significantly in A549, H460, and PC-9 cells after WCF treatment. In conclusion, the present observations indicate that WCF may inhibit lung cancer cell proliferation by promoting apoptosis via regulating the expression of PIF1.

14.
Cancer Sci ; 112(8): 3005-3017, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34028936

ABSTRACT

Immunotherapy against cancer, through immune checkpoint inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 axis, is particularly successful in tumors by relieving the immune escape. However, interindividual responses to immunotherapy are often heterogeneous. Therefore, it is essential to screen out predictive tumor biomarkers. In this study, we analyzed the commensal microbiota in stool samples and paired sputum samples from 75 metastatic non-small-cell lung cancer (NSCLC) patients at baseline and during treatment with immune checkpoint inhibitors. Results showed distinct microbes' signatures between the gut microbiota and paired respiratory microbiota. The alpha diversity between the gut and respiratory microbiota was uncorrelated, and only the gut microbiota alpha diversity was associated with anti-programmed cell death-1 response. Higher gut microbiota alpha diversity indicated better response and more prolonged progression-free survival. Comparison of bacterial communities between responders and nonresponders showed some favorable/unfavorable microbes enriched in responders/nonresponders, indicating that commensal microbiota had potential predictive value for the response to immune checkpoint inhibitors. Generally, some rare low abundance gut microbes and high abundance respiratory microbes lead to discrepancies in microbial composition between responders and nonresponders. A significant positive correlation was observed between the abundance of Streptococcus and CD8+ T cells. These results highlighted the intimate relationship between commensal microbiota and the response to immunotherapy in NSCLC patients. Gut microbiota and respiratory microbiota are promising biomarkers to screen suitable candidates who are likely to benefit from immune checkpoint inhibitor-based immunotherapy.


Subject(s)
Bacteria/classification , Carcinoma, Non-Small-Cell Lung/therapy , Immune Checkpoint Inhibitors/administration & dosage , Lung Neoplasms/therapy , Sequence Analysis, DNA/methods , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Carcinoma, Non-Small-Cell Lung/microbiology , Chemoradiotherapy , Female , Gastrointestinal Microbiome/drug effects , High-Throughput Nucleotide Sequencing , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/microbiology , Male , Neoplasm Metastasis , Phylogeny , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Streptococcus/isolation & purification , Survival Analysis , Treatment Outcome
15.
Front Genet ; 12: 639254, 2021.
Article in English | MEDLINE | ID: mdl-33708243

ABSTRACT

Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, the prognosis of patients with which is associated with both lncRNAs and cancer immunity. In this study, we collected gene expression data of 585 LUAD patients from The Cancer Genome Atlas (TCGA) database and 605 subjects from the Gene Expression Omnibus (GEO) database. LUAD patients were divided into high and low immune-cell-infiltrated groups according to the single sample gene set enrichment analysis (ssGSEA) algorithm to identify differentially expressed genes (DEGs). Based on the 49 immune-related DE lncRNAs, a four-lncRNA prognostic signature was constructed by applying least absolute shrinkage and selection operator (LASSO) regression, univariate Cox regression, and stepwise multivariate Cox regression in sequence. Kaplan-Meier curve, ROC analysis, and the testing GEO datasets verified the effectiveness of the signature in predicting overall survival (OS). Univariate Cox regression and multivariate Cox regression suggested that the signature was an independent prognostic factor. The correlation analysis revealed that the infiltration immune cell subtypes were related to these lncRNAs.

16.
Front Pharmacol ; 11: 594744, 2020.
Article in English | MEDLINE | ID: mdl-33329003

ABSTRACT

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death. It is necessary to develop effective anti-lung cancer therapeutics. Wenxia Formula (WXF), an empirical traditional Chinese herbal formula, has been reported to have significant antitumor activity. In this study, to further clarify the material basis of the anti-tumor effect of WXF, we investigated the cytotoxic effect of the N-butanol fraction of Wenxia Formula extract (NWXF) against two lung cancer and one normal human cell lines. The chemical profile of NWXF was characterized by UPLC/Q-TOF-MS analysis and a total of 201 compounds with mzCloud Best Match of greater than 70 were identified by using the online database mzCloud. To address the functional role of NWXF, we assessed cell proliferation, migration and invasion capabilities. Subcutaneous xenografts were constructed to determine the effect of NWXF in vivo. The results showed that NWXF effectively inhibited the proliferation and migration of non-small cell lung cancer (NSCLC) cells with little toxic effects on human bronchial epithelial cells. Meanwhile, orally administered NWXF exhibited prominent dose-dependent anti-tumor efficacy in vivo. Mechanistically, NWXF significantly downregulated MMP9 and Sp1-mediated MMP2 expression. In conclusion, NWXF might be a promising candidate for treatment of human lung cancer.

17.
Front Oncol ; 10: 523577, 2020.
Article in English | MEDLINE | ID: mdl-33102208

ABSTRACT

Cancer cachexia is a multifactorial syndrome characterized by continuous body wasting and loss of skeletal muscle. Impaired mitochondria function is closely associated with muscle atrophy in cancer cachexia. Our previous study confirmed the effectiveness of Baoyuan Jiedu decoction (BJD) in inhibiting cancer-induced muscle atrophy in an in vivo model. However, little is known about its mechanisms in regulating mitochondria dysfunction. In this study, we evaluated the therapeutic effect and action mechanisms of BJD against atrophy both in the Lewis-conditioned medium induced C2C12 myotube atrophy model and in a BALB/c mice xenograft model using mouse colon cancer C26 cells. The mitochondrial content was tested by 10-Non-ylacridine orange staining. Expressions of related proteins and mRNAs were detected by western blotting (WB) and qPCR, respectively. As a result, 18 major components were identified in BJD by ultra-high performance liquid chromatography-quadrupole (UHPLC-Q) Exactive analysis. As shown in the in vitro results, BJD treatment prevented prominent myotube atrophy and increased the myotube diameter of C2C12 cells. Besides, BJD treatment increased mitochondrial content and ATPase activity. Furthermore, the protein and mRNA expressions that were related to mitochondrial functions and generation such as cytochrome-c oxidase IV, Cytochrome C, nuclear respiratory factor 1, and mitochondrial transcription factor A were significantly increased in BJD treatment compared to the control group. The in vivo results showed that BJD treatment prevented body weight loss and improved the gastrocnemius index in cachexia mice. Moreover, the expressions of Atrogin-1 and muscle RING-finger protein-1 were decreased by BJD treatment. Mechanically, BJD increased the expression of peroxisome proliferator-activated receptor-gamma coactivator 1, and consistently, inhibited the expression of p38 MAPK and its phosphorylation both in vivo and in vitro. Taken together, this study identified that BJD effectively relieved cancer-induced myotube atrophy and provided a potential mechanism for BJD in regulating mitochondrial dynamics through p38 MAPK/PGC-1α signaling pathway.

18.
Front Pharmacol ; 11: 500137, 2020.
Article in English | MEDLINE | ID: mdl-33041787

ABSTRACT

Non-small cell lung cancer (NSCLC), the major form of primary lung cancer, is a common cause of cancer-related death worldwide. Cell adhesion-mediated drug resistance (CAM-DR), a form of chemotherapy resistance, has been reported to confer resistance to various chemotherapeutic agents. Integrin ß1 signaling plays an important role in CAM-DR and has been proposed as a potential target for NSCLC. Wenxia Changfu Formula (WCF) is a Traditional Chinese Compound Prescription for the intervention treatment of NSCLC combined with cisplatin (DDP). This study aims to investigate the effect and mechanism of WCF combined with DDP in reversing CAM-DR. Firstly, the chemical profile of WCF was characterized by UPLC/Q-TOF-MS analysis. A total of 237 compounds with mzCloud Best Match of greater than 70 were identified by using the online database mzCloud. Secondly, we established A549 three-dimensional(3D) cells cultured in vitro and nude mice xenografts models of the A549 cell line with Integrin ß1 overexpression. In vitro, the cell viability, migration and adhesion were measured though MTT Assay, Wound Healing Assay and Cell Adhesion Assay, the Integrin ß1 expression of the A549 cells was assessed through immunocytochemistry; in vitro, the transplanted tumor morphology and the colocalization of Integrin ß1 and its ligands were tested by HE staining and immunofluorescence. As a result, we found that the combination effectively reduced cell viability, suppressed migration and adhesion, and downregulated the protein level of Integrin ß1 in three-dimensional cultured A549 cells. And the combination of WCF with DDP significantly inhibited tumor growth, increased organelle vacuolations and decreased colocalization of Integrin ß1 and its ligands including fibulin-2 and laminin. Taken together, our results confirm that the combination of WCF with DDP could reverse the lung cancer CAM-DR through the Integrin ß1 signaling pathway.

19.
Biomed Pharmacother ; 129: 110380, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32554250

ABSTRACT

Baoyuan Jiedu (BYJD for short) decoction, a traditional Chinese medicine formula, is composed of Astragalus, Ginseng, Aconite root, Honeysuckle, Angelica, Licorice, which has the functions of nourishing qi and blood, enhancing immune function, improving quality of life and prolonging survival time of tumor patients. The present study aimed to investigate the effect and mechanism of BYJD decoction on reversing the pre-metastatic niche. We showed that BYJD decoction could prolong the survival time of 4T1 tumor-bearing mice. Moreover, we found that the BYJD decoction inhibited the formation of lung pre-metastatic niche and inhibited recruitment of myeloid derived suppressor cells (MDSCs) in the lung. Mechanistically, we showed that the proteins and genes expression of TGF-ß, Smad2, Smad3, p-Smad2/3, Smad4, CCL9 in the TGF-ß/CCL9 signaling pathway were suppressed by BYJD decoction. In line with the above findings, our results confirm that BYJD decoction inhibits the accumulation of MDSC in pre-metastatic niche of lung via TGF-ß/CCL9 pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Chemokines, CC/metabolism , Drugs, Chinese Herbal/pharmacology , Lung Neoplasms/prevention & control , Lung/drug effects , Macrophage Inflammatory Proteins/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokines, CC/genetics , Female , Gene Expression Regulation, Neoplastic , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Macrophage Inflammatory Proteins/genetics , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Signal Transduction , Transforming Growth Factor beta/genetics , Tumor Burden/drug effects
20.
Cell Transplant ; 28(7): 839-850, 2019 07.
Article in English | MEDLINE | ID: mdl-31037985

ABSTRACT

MiR-128, one of the most enriched miRNAs in the human brain, has been reported to protect MCAO mice via inhibiting P38α MAPK. Whether it is involved in pathogenesis in acute ischemic stroke patients remains to be determined. The present study focused on the clinical importance of miR-128 and its underlying mechanisms. We detected miR-128 levels in the circulating lymphocytes, neutrophils, and plasma of acute ischemic stroke patients by using RT-PCR. miR-128 levels were significantly elevated in circulating lymphocytes, neutrophils, and plasma of patients with acute ischemic stroke. In addition, miR-128 levels in circulating lymphocytes correlated positively with the infarction volume, NIHSS scores at 7 days and mRS at 90 days after ischemic stroke onset. Subsequent KEGG pathway analysis showed that the MAPK signaling pathway and cell cycle are among the pathways targeted by miR-128. Although no correlation was found between miR-128 in plasma and peripheral inflammatory cell numbers, miR-128 decreased in the penumbra and increased in the infarction core of ipsilateral brain tissues in MCAO mice. Moreover, an in vitro study demonstrated that miR-128 antagomir aggravated primary neuronal damage and exacerbated cell cycle reactivation induced by OGD/R stimulation; the underlying mechanism involved increasing cyclin A2, PTEN, and ERK expression and promoting phosphorylation of PTEN and ERK. From the above results, we concluded that the upregulation of miR-128 in circulating lymphocytes of acute ischemic stroke patients was correlated with stroke severity and miR-128 antagomir exacerbated ischemia-reperfusion induced neuronal injury via promoting neuronal cell cycle reentry.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Cycle/physiology , MicroRNAs/metabolism , Neurons/cytology , Neurons/metabolism , Stroke/metabolism , Stroke/pathology , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Flow Cytometry , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...