Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2400363, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558539

ABSTRACT

Helicobacter pylori (H. pylori) infection is closely associated with the development of various gastric diseases. The effectiveness of current clinical antibiotic therapy is hampered by the rise of drug-resistant strains and the formation of H. pylori biofilm. This paper reports a sonodynamic nanocomposite PtCu3-PDA@AIPH@Fucoidan (PPAF), which consists of dopamine-modified inorganic sonosensitizers PtCu3, alkyl radicals (R•) generator AIPH and fucoidan, can penetrate the mucus layer, target H. pylori, disrupt biofilms, and exhibit excellent bactericidal ability. In vitro experiments demonstrate that PPAF exhibits excellent acoustic kinetic properties, generating a significant amount of reactive oxygen species and oxygen-independent R• for sterilization under ultrasound stimulation. Simultaneously, the produced N2 can enhance the cavitation effect, aiding PPAF nanoparticles in penetrating the gastric mucus layer and disrupting biofilm integrity. This disruption allows more PPAF nanoparticles to bind to biofilm bacteria, facilitating the eradication of H. pylori. In vivo experiments demonstrate that ultrasound-stimulated PPAF exhibited significant antibacterial efficacy against H. pylori. Moreover, it effectively modulated the expression levels of inflammatory factors and maintained gastrointestinal microbiota stability when compared to the antibiotic treatment group. In summary, PPAF nanoparticles present a potential alternative to antibiotics, offering an effective and healthy option for treating H. pylori infection.

2.
Front Plant Sci ; 13: 1081807, 2022.
Article in English | MEDLINE | ID: mdl-36684799

ABSTRACT

High temperatures caused by climate warming severely affect the grain yield and quality of rice. In this study, the rice cultivars Longliangyou Huazhan (LLYHZ) and Quanliangyou 2118 (QLY2118) were selected as the experimental materials for investigation of an optimal cultivation system under high-temperature treatment. In addition, the heat-resistant cultivar Huanghuazhan (HHZ) and heat-sensitive cultivar Huiliangyou 858 (HLY858) were chosen as the experimental materials to study the effects of exogenous plant growth regulators on heat stress responses under high-temperature treatment. The results showed that mechanical transplanting of carpet seedlings and delayed sowing effectively increased the leaf area index and reduced the canopy temperature of LLYHZ and QLY2118. Furthermore, carpet seedling mechanical transplantation and delayed sowing improved grain yield and quality. Spray application of five plant growth regulators revealed that brassinolide and salicylic acid had the strongest effects on significantly improving antioxidant enzyme activities in the panicle, which would reduce the damage caused by the accumulation of reactive oxygen species and enhance plant tolerance of high-temperature stress. In addition, brassinolide and salicylic acid enhanced the percentage of anther dehiscence and percentage seed set. In this study, a set of simplified eco-friendly cultivation techniques for single-season indica rice adaptation to high-temperature stress was established. These results will be of great importance in alleviating the effects of high-temperature stress on rice production.

3.
J Sci Food Agric ; 101(14): 6125-6133, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33905122

ABSTRACT

BACKGROUOND: Grain chalkiness lowers the market value of rice. Alleviating grain chalkiness is the most challenging issue in many rice-producing areas of the world. Nitrogen (N) metabolism has received increasing attention as a result of its relationship with grain chalkiness, although little information is available on the mechanism of N-induced grain chalk. RESULTS: A highly chalky rice variety OM052 was used to explore the protein synthesis and its accumulation in the grain exposed to N topdressing (N+) at the panicle initiation stage and a control (N-). The results showed that chalky kernels were stimulated by the N+ treatment and more prone to occur on the top and primary rachis. The grain protein content was increased because of the increased average and maximum rates of protein accumulation during grain filling, which was related to the enhanced activities of glutamine synthetase, glutamate synthase, glutamic oxalo-acetic transaminase and glutamate pyruvate transaminase under the N+ treatment. The activities of these enzymes at 15 days after flowering (DAF) were notably positively correlated with grain chalky traits and protein content. CONCLUSION: N topdressing regulates the synthesis and accumulation of the protein by affecting the key enzymes, especially at 15 DAF, which is attributed to grain chalkiness in rice. © 2021 Society of Chemical Industry.


Subject(s)
Oryza/metabolism , Seed Storage Proteins/biosynthesis , Seeds/chemistry , Gene Expression Regulation, Plant , Nitrogen/metabolism , Oryza/chemistry , Oryza/genetics , Phenotype , Protein Biosynthesis , Seed Storage Proteins/chemistry , Seed Storage Proteins/genetics , Seeds/genetics , Seeds/metabolism
4.
Plant Physiol Biochem ; 154: 622-635, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32717594

ABSTRACT

Grain chalkiness is a highly undesirable trait that adversely affects rice quality. This chalkiness is easily influenced by the application of chemical nitrogen (N) fertilizer at the late growth stage. However, on the molecular mechanism underlying grain chalkiness caused by late N fertilization is not fully clear. In this study, proteomic differences in expression were determined in developing grains exposed to N topdressing (108 kg N ha-1, N+) and a control (0 kg N ha-1, N0), using the rice variety OM052, which has a high level of chalkiness. A total of 198 differentially expressed proteins (DEPs) were detected between the N+ and N0 treatments, including 9 up-regulated proteins and 189 down-regulated proteins. Of these DEPs, approximately half were associated with carbohydrate metabolism (glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, fermentation and starch metabolism) and N metabolism (protein synthesis, folding, degradation and storage, amino acid synthesis and catabolism). A detailed pathway dissection revealed that multiple metabolic pathways during the grain filling stage were involved in the N-induced grain chalkiness. Reduced abundances of proteins associated with respiratory metabolism and energy metabolism drastically impaired the biosynthesis and deposition of starch in the developmental endosperms, which might be a crucial trigger for the increase in grain chalkiness. The disturbed N metabolism and differential expression of storage proteins up-regulated during the grain filling stage are able to partially explain the occurrence of grain chalkiness in rice.


Subject(s)
Metabolic Networks and Pathways , Nitrogen/metabolism , Oryza/metabolism , Proteomics , Seeds , Edible Grain , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...