Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(24): e2207362, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36896997

ABSTRACT

Flexible pressure sensors play an indispensable role in flexible electronics. Microstructures on flexible electrodes have been proven to be effective in improving the sensitivity of pressure sensors. However, it remains a challenge to develop such microstructured flexible electrodes in a convenient way. Inspired by splashed particles from laser processing, herein, a method for customizing microstructured flexible electrodes by femtosecond laser-activated metal deposition is proposed. It takes advantage of the catalyzing particles scattered during femtosecond laser ablation and is particularly suitable for moldless, maskless, and low-cost fabrication of microstructured metal layers on polydimethylsiloxane (PDMS). Robust bonding at the PDMS/Cu interface is evidenced by the scotch tape test and the duration test over 10 000 bending cycles. Benefiting from the firm interface, the developed flexible capacitive pressure sensor with microstructured electrodes presents several conspicuous features, including a sensitivity (0.22 kPa-1 ) 73 times higher than the one using flat Cu electrodes, ultralow detection limit (<1 Pa), rapid response/recovery time (4.2/5.3 ms), and excellent stability. Moreover, the proposed method, inheriting the merits of laser direct writing, is capable of fabricating a pressure sensor array in a maskless manner for spatial pressure mapping.

2.
Micromachines (Basel) ; 13(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630266

ABSTRACT

The small size of robotic microswimmers makes them suitable for performing biomedical tasks in tiny, enclosed spaces. Considering the effects of potentially long-term retention of microswimmers in biological tissues and the environment, the degradability of microswimmers has become one of the pressing issues in this field. While degradable hydrogel was successfully used to prepare microswimmers in previous reports, most hydrogel microswimmers could only be fabricated using two-photon polymerization (TPP) due to their 3D structures, resulting in costly robotic microswimmers solution. This limits the potential of hydrogel microswimmers to be used in applications where a large number of microswimmers are needed. Here, we proposed a new type of preparation method for degradable hydrogel achiral crescent microswimmers using a custom-built stop-flow lithography (SFL) setup. The degradability of the hydrogel crescent microswimmers was quantitatively analyzed, and the degradation rate in sodium hydroxide solution (NaOH) of different concentrations was investigated. Cytotoxicity assays showed the hydrogel crescent microswimmers had good biocompatibility. The hydrogel crescent microswimmers were magnetically actuated using a 3D Helmholtz coil system and were able to obtain a swimming efficiency on par with previously reported microswimmers. The results herein demonstrated the potential for the degradable hydrogel achiral microswimmers to become a candidate for microscale applications.

3.
ACS Appl Mater Interfaces ; 14(9): 11971-11980, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35212517

ABSTRACT

Flexible metal electrodes are essential for flexible electronics, where the main challenge is to obtain mask-free patterned metals directly on substrates such as poly(dimethylsiloxane) (PDMS) at low cost. This work highlights a feasible strategy named femtosecond laser-activated metal deposition for electroless deposition of metals (Cu, Ni, Ag, and Au) on PDMS, which is suitable for maskless and low-cost fabrication of metal layers on PDMS and even on other materials of different natures including polyethylene terephthalate, paper, Si, and glass. The electrical conductivity of the PDMS/Cu electrode is comparable to that of bulk Cu. Moreover, robust bonding at the PDMS/Cu interface is evidenced by a scotch tape test and bending test of more than 20,000 cycles. Compared with previous studies using a nanosecond laser, the restriction on absorbing sensitizers could be alleviated, and catalysts could originate from precursors without polymer substrates under a femtosecond laser, which may be attributed to nonlinear absorption and ultrashort heating time with the femtosecond laser. Implementing a human-machine interface task is demonstrated by recognizing hand gestures via a multichannel electrode array with high fidelity to control a robot hand.

4.
ACS Nano ; 15(4): 6633-6644, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33819027

ABSTRACT

Wrinkling two-dimensional (2D) transition metal dichalcogenides (TMDCs) provides a mechanism to adjust the physical and chemical properties as per need. Traditionally, TMDCs wrinkles achieved by transferring exfoliated materials on prestretched polymer suffer from poor control and limited sample area, which significantly hinders desirable applications. Herein, we fabricate large-area monolayer TMDCs wrinkle arrays directly on the m-quartz substrate using strained epitaxy. The uniaxial thermal expansion coefficient mismatch between the substrate and TMDCs materials enables the generation of large uniaxial thermal strain. By quenching the TMDCs after growth, this uniaxial thermal strain can be quickly released as a form of wrinkle arrays along the [0001]quartz direction. Using WS2 as a model system, the size of as-grown wrinkles can be finely modulated within sub-100 nm by changing the quenching temperature. These WS2 wrinkles can be locally folded and form various multilayer structures with odd layer numbers during the transfer process. Besides, the corrugated structures in WS2 wrinkles induce significant changes to optical properties including anisotropic Raman response, enhanced photoluminescence, and second harmonic generation emissions. Furthermore, these wrinkle arrays exhibit enhanced chemical reactivity that can be selectively engineered to ribbon arrays with improved electrocatalytic performance. The developed strategy of strained epitaxy here should enable flexibility in the design of more sophisticated 2D-based structures, offering a simple but effective way toward the modulation of properties with enhanced performances.

SELECTION OF CITATIONS
SEARCH DETAIL
...