Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 71(20): 7753-62, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-16995683

ABSTRACT

A new phosphorylated linear nitrone N-(4-hydroxybenzyliene)-1-diethoxyphosphoryl-1-methylethylamine N-oxide (4-HOPPN) was synthesized, and its X-ray structure was determined. The spin trapping ability of various kinds of free radicals by 4-HOPPN was evaluated. Kinetic study of decay of the superoxide spin adduct (4-HOPPN-OOH) shows the half-life time of 8.8 min. On the basis of the X-ray structural coordinates, theoretical analyses using density functional theory (DFT) calculations at the B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level were performed on spin-trapping reactions of superoxide radical with 4-HOPPN and PBN and three possible decay routes for their corresponding superoxide adducts. The comparative calculations on the spin-trapping reactions with superoxide radical predicted that both spin traps share an identical reaction type and have comparable potency when spin trapping superoxide radical. Analysis of the optimized geometries of 4-HOPPN-OOH and PBN-OOH reveals that an introduction of the phosphoryl group can efficiently stabilize the spin adduct through the intramolecular H-bonds, the intramolecular nonbonding attractive interactions, as well as the bulky steric protection. Examination of the decomposition thermodynamics of 4-HOPPN-OOH and PBN-OOH further supports the stabilizing role of the phosphoryl group to a linear phosphorylated spin adduct.


Subject(s)
Nitrogen Oxides/chemistry , Phosphorus Compounds/chemistry , Spin Trapping/methods , Superoxides/chemistry , Crystallography, X-Ray , Half-Life , Hydrogen Bonding , Kinetics , Models, Theoretical , Molecular Structure , Thermodynamics
2.
Chem Commun (Camb) ; (39): 4943-5, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16205808

ABSTRACT

A novel spin trap containing an iodoacetamide group has been synthesized and then used to target polypeptides, i.e. glutathione and bovine serum albumin, by which the resulting covalently bonded bioconjugates exhibit great potential for the application of spin trapping of transient radicals in biological systems.


Subject(s)
Peptides/chemistry , Spin Labels , Sulfhydryl Compounds/chemistry , Animals , Cattle , Molecular Structure , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...