Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 20(1): 88-93, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20134238

ABSTRACT

Superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide is converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) and displays both SOD and GPX activities and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by xanthine oxidase (XOD)/xanthine/Fe2+ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.


Subject(s)
Glutathione Peroxidase/chemistry , Peptides/chemistry , Superoxide Dismutase/chemistry , Animals , Chlorocebus aethiops , Copper/chemistry , Glutathione Peroxidase/chemical synthesis , Glutathione Peroxidase/pharmacology , Kinetics , Oxidative Stress/drug effects , Peptides/chemical synthesis , Peptides/pharmacology , Selenium/chemistry , Superoxide Dismutase/chemical synthesis , Superoxide Dismutase/pharmacology , Vero Cells
2.
FEBS J ; 274(15): 3846-54, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17617230

ABSTRACT

A 6A,6A'-dicyclohexylamine-6B,6B'-diselenide-bis-beta-cyclodextrin (6-CySeCD) was designed and synthesized to imitate the antioxidant enzyme glutathione peroxidase (GPX). In this novel GPX model, beta-cyclodextrin provided a hydrophobic environment for substrate binding within its cavity, and a cyclohexylamine group was incorporated into cyclodextrin in proximity to the catalytic selenium in order to increase the stability of the nucleophilic intermediate selenolate. 6-CySeCD exhibits better GPX activity than 6,6'-diselenide-bis-cyclodextrin (6-SeCD) and 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (Ebselen) in the reduction of H(2)O(2), tert-butyl hydroperoxide and cumenyl hydroperoxide by glutathione, respectively. A ping-pong mechanism was observed in steady-state kinetic studies on 6-CySeCD-catalyzed reactions. The enzymatic properties showed that there are two major factors for improving the catalytic efficiency of GPX mimics. First, the substrate-binding site should match the size and shape of the substrate and second, incorporation of an imido-group increases the stability of selenolate in the catalytic cycle. More efficient antioxidant ability compared with 6-SeCD and Ebselen was also seen in the ferrous sulfate/ascorbate-induced mitochondria damage system, and this implies its prospective therapeutic application.


Subject(s)
Chlorine/chemistry , Cyclodextrins/chemistry , Cyclodextrins/metabolism , Glutathione Peroxidase/metabolism , Organoselenium Compounds/chemistry , Organoselenium Compounds/metabolism , Selenium/chemistry , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/metabolism , Animals , Catalysis , Cattle , Cyclodextrins/chemical synthesis , Kinetics , Mitochondria, Heart/metabolism , Molecular Structure , Organoselenium Compounds/chemical synthesis , Oxidative Stress , beta-Cyclodextrins/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...