Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Medicine (Baltimore) ; 103(19): e38066, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728485

ABSTRACT

CDCA3, a cell cycle regulator gene that plays a catalytic role in many tumors, was initially identified as a regulator of cell cycle progression, specifically facilitating the transition from the G2 phase to mitosis. However, its role in glioma remains unknown. In this study, bioinformatics analyses (TCGA, CGGA, Rembrandt) shed light on the upregulation and prognostic value of CDCA3 in gliomas. It can also be included in a column chart as a parameter predicting 3- and 5-year survival risk (C index = 0.86). According to Gene Set Enrichment Analysis and gene ontology analysis, the biological processes of CDCA3 are mainly concentrated in the biological activities related to cell cycle such as DNA replication and nuclear division. CDCA3 is closely associated with many classic glioma biomarkers (CDK4, CDK6), and inhibitors of CDK4 and CDK6 have been shown to be effective in tumor therapy. We have demonstrated that high expression of CDCA3 indicates a higher malignancy and poorer prognosis in gliomas.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Cell Cycle Proteins , Glioma , Molecular Targeted Therapy , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Computational Biology , Glioma/genetics , Glioma/metabolism , Molecular Targeted Therapy/methods , Prognosis , Up-Regulation
2.
Huan Jing Ke Xue ; 44(8): 4211-4219, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694616

ABSTRACT

The change trend, relationship, and influencing factors of PM2.5 and O3 concentrations were analyzed by using a Kolmogorov-Zurbenko (KZ) filter coupled with stepwise multiple linear regression analysis and the spatiotemporal resolution monitoring data of PM2.5 and O3 and meteorological data observed in Tianjin from 2013 to 2020. The results showed that a significant decreasing trend of PM2.5 concentrations by 50.0% was observed from 2013 to 2020, whereas an increasing trend for O3 concentrations by 25.8% was observed from 2013 to 2020. Compared with that in 2013 to 2017, the monthly difference in PM2.5 concentrations gradually narrowed from 2018 to 2020, whereas the concentration of O3 had increased significantly since April, and the occurrence time of O3 pollution was advanced. The correlation coefficient patterns of O3 and PM2.5 showed obvious seasonal distribution characteristics. The correlation coefficients were negatively correlated in winter and positively correlated in the summer, and the correlation coefficients in summer were generally higher than those in other seasons. The correlation coefficients between O3 and PM2.5 in different seasons were positively proportional to the fitting slope. The ratios of the fitting slope to correlation coefficients showed an increasing trend, which might reflect that the inhibitory effect of PM2.5 on O3 formation in the PM2.5-O3 interaction mechanism might have been weakened due to the impact of emission reduction. A significant decreasing trend was observed for the long-term trend components of the PM2.5 concentration time series; emission reduction played a leading role, and meteorological factors contributed -3 to 6 µg·m-3. The changes in the relationship between the PM2.5/CO ratio versus NO2/SO2 from negative to positive were observed from 2013-2017 to 2018-2020 in Tianjin, which could indicate the enhanced contribution potential of nitrogen oxides to the main secondary component formation of PM2.5 under the current emission reduction scenarios, and the main secondary components of PM2.5in Tianjin gradually changed from sulfate to nitrate. An overall upward trend was observed for the long-term trend components of the O3 concentration time series from 2013 to 2020, and the contribution of precursor emissions to the long-term component of O3 increased from 2013 to 2018 and began to decrease after 2019. The contribution of meteorological factors to the long-term component of O3 presented an obvious stage change, showing a downward trend from 2013 to 2016 and an upward trend from 2016 to 2020. The O3 concentration presented a non-linear relationship with NO2 during the period of intense atmospheric photochemical processes (11:00-16:00) in summer. Compared with that in 2013-2015, the fitting curve of O3 and NO2 showed an obvious offset to the low value of NO2 from 2016 to 2020, which reflected that the NOx emission reduction in this period achieved certain results. Compared with that in 2018, the fitting curve of O3 and NO2 moved downward from 2019 to 2020, which may reflect that NOx and VOCs emission reduction had a non-negligible effect on the O3 decline at this stage.

3.
Huan Jing Ke Xue ; 44(6): 3054-3062, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309924

ABSTRACT

The emission reduction effect of major air pollution control measures on PM2.5 concentrations was assessed using air quality simulations based on the calculation data of emission reductions from different air pollution control measures and the high spatiotemporal resolution online monitoring data of PM2.5 during the 13th Five-Year Period in Tianjin. The results showed that the total emission reductions of SO2, NOx, VOCs, and PM2.5 from 2015 to 2020 were 4.77×104, 6.20×104, 5.37×104, and 3.53×104 t, respectively. SO2 emission reduction was mainly due to the prevention of process pollution, loose coal combustion, and thermal power. NOx emission reduction was mainly due to the prevention of process pollution, thermal power, and steel industry. VOCs emission reduction was mainly due to prevention of process pollution. PM2.5 emission reduction was mainly due to the prevention of process pollution, loose coal combustion, and the steel industry. The concentrations, pollution days, and heavy pollution days of PM2.5 decreased significantly from 2015 to 2020 by 31.4%, 51.2%, and 60.0% compared to those in 2015, respectively. The concentrations and pollution days of PM2.5 decreased slowly in the later stage (from 2018 to 2020)as compared with those in the early stage (from 2015 to 2017), and the days of heavy pollution remained for approximately 10 days. The results of air quality simulations showed that meteorological conditions contributed one-third to the reduction in PM2.5 concentrations, and the emission reductions of major air pollution control measures contributed two-thirds to the reduction in PM2.5 concentrations. For all air pollution control measures from 2015 to 2020, PM2.5 concentrations were reduced by the prevention of process pollution, loose coal combustion, the steel industry, and thermal power by 2.66, 2.18, 1.70, and 0.51 µg·m-3, respectively, accounting for 18.3%, 15.0%, 11.7%, and 3.5% of PM2.5 concentration reductions. In order to promote the continuous improvement in PM2.5 concentrations during the 14th Five-Year Plan period, under the total coal consumption control and the goal of "peaking carbon dioxide emissions and achieving carbon neutrality," Tianjin should continue to optimize and adjust the coal structure and further promote the coal consumption to the power industry with an advanced pollution control level. At the same time, it is necessary to further improve the emission performance of industrial sources in the whole process, taking environmental capacity as the constraint; design the technical route for industrial optimization, adjustment, transformation, and upgrading; and optimize the allocation of environmental capacity resources. Additionally, the orderly development model for key industries with limited environmental capacity should be proposed, and clean upgrading, transformation, and green development should be guided for enterprises.

4.
Biomimetics (Basel) ; 8(2)2023 May 29.
Article in English | MEDLINE | ID: mdl-37366824

ABSTRACT

The hitting position and velocity control for table tennis robots have been investigated widely in the literature. However, most of the studies conducted do not consider the opponent's hitting behaviors, which may reduce hitting accuracy. This paper proposes a new table tennis robot framework that returns the ball based on the opponent's hitting behaviors. Specifically, we classify the opponent's hitting behaviors into four categories: forehand attacking, forehand rubbing, backhand attacking, and backhand rubbing. A tailor-made mechanical structure that consists of a robot arm and a two-dimensional slide rail is developed such that the robot can reach large workspaces. Additionally, a visual module is incorporated to enable the robot to capture opponent motion sequences. Based on the opponent's hitting behaviors and the predicted ball trajectory, smooth and stable control of the robot's hitting motion can be obtained by applying quintic polynomial trajectory planning. Moreover, a motion control strategy is devised for the robot to return the ball to the desired location. Extensive experimental results are presented to demonstrate the effectiveness of the proposed strategy.

5.
Huan Jing Ke Xue ; 43(6): 2928-2936, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686762

ABSTRACT

The characteristics, pollutant concentration distribution, and key meteorological factors of PM2.5-O3 compound pollution in Tianjin were analyzed based on the high-resolution online monitoring data of PM2.5, O3,and meteorological data observed in Tianjin from 2013 to 2019. Total PM2.5-O3 compound pollution was 94 days and showed a decreasing trend by year; a significant decreasing trend of PM2.5-O3 compound pollution days were observed in the early stage, with a decline rate of 52.2% from 2013 to 2015. By contrast, in the later period from 2016 to 2019, a fluctuating increasing trend of PM2.5-O3 compound pollution days of 16.7% was observed. PM2.5-O3 compound pollution days mainly occurred from March to September each year with substantial variation by year, mainly occurring in June to August from 2013 to 2016 and in April and September from 2017 to 2019. The peak value of ρ(O3) (301-326 µg·m-3) appeared when ρ(PM2.5) ranged from 75 µg·m-3 to 85 µg·m-3. PM2.5-O3 compound pollution days accounted for 34.4% of total O3 pollution events in Tianjin, which showed a decreasing trend by year. The peak O3 concentration and average O3 concentration during PM2.5-O3 compound pollution were higher than those during simplex O3 pollution, and the number of days with PM2.5 and O3 as the primary pollutant decreased and increased in compound pollution days by year, respectively. The weather situation of PM2.5-O3 compound pollution was categorized into five weather types, namely low pressure, weak high pressure, rear of high pressure, front of cold front, and equalized pressure. The low pressure, front of cold front, and weak high pressure were observed most frequently, accounting for 92.5% of the total weather situation. The occurrence of PM2.5-O3 compound pollution was most probable when the dominant wind direction was the southwest and south, the average wind speed was less than 2 m·s-1, the temperature was between 20-35℃, and the humidity was between 40%-60%.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , Meteorological Concepts , Particulate Matter/analysis , Seasons
6.
Comput Intell Neurosci ; 2022: 1343358, 2022.
Article in English | MEDLINE | ID: mdl-35665293

ABSTRACT

With the increasing pressure on college students in terms of study, work, emotion, and life, the emotional changes of college students are becoming more and more obvious. For college student management workers, if they can accurately grasp the emotional state of each college student in all aspects of the whole process, it will be of great help to student management work. The traditional way to understand students' emotions at a certain stage is mostly through chats, questionnaires, and other methods. However, data collection in this way is time-consuming and labor-intensive, and the authenticity of the collected data cannot be guaranteed because students will lie out of impatience or unwillingness to reveal their true emotions. In order to explore an accurate and efficient emotion recognition method for college students, more objective physiological data are used for emotion recognition research. Since emotion is generated by the central nervous system of the human brain, EEG signals directly reflect the electrophysiological activity of the brain. Therefore, in the field of emotion recognition based on physiological signals, EEG signals are favored due to their ability to intuitively respond to emotions. Therefore, a deep neural network (DNN) is used to classify the collected emotional EEG data and obtain the emotional state of college students according to the classification results. Considering that different features can represent different information of the original data, in order to express the original EEG data information as comprehensively as possible, various features of the EEG are first extracted. Second, feature fusion is performed on multiple features using the autosklearn model integration technique. Third, the fused features are input to the DNN, resulting in the final classification result. The experimental results show that the method has certain advantages in public datasets, and the accuracy of emotion recognition exceeds 88%. This proves the used emotion recognition is feasible to be applied in real life.


Subject(s)
Electroencephalography , Neural Networks, Computer , Emotions/physiology , Humans , Students , Technology
7.
Comput Intell Neurosci ; 2022: 4565968, 2022.
Article in English | MEDLINE | ID: mdl-35712070

ABSTRACT

Stress is an unavoidable problem for today's college students. Stress can arouse strong personal emotional and behavioral responses. Compared with other groups of the same age, college students have a special way of life and living environment. They have complex interpersonal relationships and relatively weak social support systems. At the same time, they also face fierce competition in both academic and employment. However, they lack the skills to deal with the crisis and are reluctant to ask others for help, which leads to a simultaneous increase in mental stress. The pressure on college students mainly comes from study, family, social, employment, society, and economy. When students face multiple pressures from family, school, society, etc., some students are prone to some psychological problems due to their own personality or external environment and other reasons. Therefore, regular assessment of students' stress status is an important means to prevent college students' psychological problems. Considering that in real life, the number of students whose pressure is within the tolerable range is the majority, while the number of students who are under too much pressure is a minority. Therefore, the actual dataset to be identified belongs to a kind of imbalanced data. In this study, an improved extreme learning machine (IELM) is used to improve the performance of the recognition model as much as possible. IELM takes the idea of label weighting as the starting point, introduces the AdaBoost algorithm, and combines its weight distribution with the label weighted extreme learning machine (ELM). During the weight update process, the advantage of the imbalanced nature of multi-label datasets is taken. IELM was used to classify EEG data to determine the stress level of college students. The experimental results demonstrate that the algorithm used in this study has excellent classification performance and can accurately assess students' stress levels. The accurate assessment of stress has provided a solid foundation for the development of students' mental health and has significant practical implications.


Subject(s)
Interpersonal Relations , Students , Electroencephalography , Humans , Schools , Stress, Psychological , Students/psychology
8.
Huan Jing Ke Xue ; 43(3): 1140-1150, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258178

ABSTRACT

The characteristics and sources of PM2.5-O3 compound pollution were analyzed based on the high-resolution online monitoring data of PM2.5, O3 and volatile organic compounds(VOCs) observed in Tianjin from 2017 to 2019. The results showed that total PM2.5-O3 compound pollution was 34 days, which only appeared between March and September and slightly increased by year. The peak value of ρ(O3)(301-326 µg·m-3) appeared when ρ(PM2.5) ranged from 75 µg·m-3 to 85 µg·m-3. During PM2.5-O3 compound pollution, the average ρ(VOCs) was 72.59 µg·m-3, and the chemical compositions of VOCs were alkanes, aromatics, alkenes, and alkynes, accounting for 61.51%, 20.38%, 11.54%, and 6.57% of VOCs concentration on average, respectively. The concentration of the top 20 species of VOCs increased, among which the proportion of alkane species such as ethane, n-butane, isobutane, and isopentane increased; the proportion of alkenes and alkynes decreased slightly; and the proportion of benzene and 1,2,3-trimethylbenzene of aromatic hydrocarbons increased slightly. The ozone formation potential(OFP) contribution of alkanes, alkenes, aromatics, and alkynes were 19.68%, 39.99%, 38.08%, and 2.25%, respectively; the contributions of alkanes, alkenes, and aromatics to secondary organic aerosol(SOA) formation potential were 7.94%, 2.17%, and 89.89%, respectively. Compared with that of non-compound pollution, the contribution of alkanes and aromatics to OFP increased 13.8% and 4.3%, and that to SOA formation potential increased 2.3% and 0.2%, respectively. The contribution of alkenes to OFP and SOA formation potential decreased 9.4% and 15.6%, respectively, and the contribution of alkynes to OFP increased 7.7% in compound pollution. The contributions of main species such as 1-pentene, n-butane, methyl cyclopentane, isopentane, 1,2,3-trimethylene, propane, toluene, acetylene, o-xylene, ethylbenzene, m-ethyltoluene, and m/p-xylene to OFP increased, and that of isoprene to OFP decreased. The contribution of benzene, 1,2,3-trimethylbenzene, toluene, and o-xylene to the potential formation of SOA increased during compound pollution. Positive matrix factorization was applied to estimate the contributions of sources to OFP and SOA formation potential in compound pollution, solvent usage, automobile exhaust, petrochemical industrial emission, natural source, liquefied petroleum gas(LPG) evaporation, combustion source, gasoline evaporation, and other industrial process sources were identified as major sources of OFP and SOA formation potential; the contributions of each source to OFP were 21.9%, 16.9%, 16.7%, 12.4%, 8.3%, 7.7%, 2.9%, and 13.2%, respectively, and to SOA formation potentials were 46.8%, 14.4%, 7.1%, 11.9%, 5.9%, 6.6%, 1.6%, and 5.7%, respectively. Solvent usage, automobile exhaust, and petrochemical industrial emissions were main sources for PM2.5-O3 compound pollution.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
9.
J Healthc Eng ; 2021: 7799793, 2021.
Article in English | MEDLINE | ID: mdl-34853672

ABSTRACT

Traffic accidents are easily caused by tired driving. If the fatigue state of the driver can be identified in time and a corresponding early warning can be provided, then the occurrence of traffic accidents could be avoided to a large extent. At present, the recognition of fatigue driving states is mostly based on recognition accuracy. Fatigue state is currently recognized by combining different features, such as facial expressions, electroencephalogram (EEG) signals, yawning, and the percentage of eyelid closure over the pupil over time (PERCLoS). The combination of these features increases the recognition time and lacks real-time performance. In addition, some features will increase error in the recognition result, such as yawning frequently with the onset of a cold or frequent blinking with dry eyes. On the premise of ensuring the recognition accuracy and improving the realistic feasibility and real-time recognition performance of fatigue driving states, a fast support vector machine (FSVM) algorithm based on EEGs and electrooculograms (EOGs) is proposed to recognize fatigue driving states. First, the collected EEG and EOG modal data are preprocessed. Second, multiple features are extracted from the preprocessed EEGs and EOGs. Finally, FSVM is used to classify and recognize the data features to obtain the recognition result of the fatigue state. Based on the recognition results, this paper designs a fatigue driving early warning system based on Internet of Things (IoT) technology. When the driver shows symptoms of fatigue, the system not only sends a warning signal to the driver but also informs other nearby vehicles using this system through IoT technology and manages the operation background.


Subject(s)
Automobile Driving , Accidents, Traffic , Electroencephalography/methods , Electrooculography/methods , Fatigue/diagnosis , Humans
10.
Comput Math Methods Med ; 2020: 8620403, 2020.
Article in English | MEDLINE | ID: mdl-32714431

ABSTRACT

Brain tumors are one of the most deadly diseases with a high mortality rate. The shape and size of the tumor are random during the growth process. Brain tumor segmentation is a brain tumor assisted diagnosis technology that separates different brain tumor structures such as edema and active and tumor necrosis tissues from normal brain tissue. Magnetic resonance imaging (MRI) technology has the advantages of no radiation impact on the human body, good imaging effect on structural tissues, and an ability to realize tomographic imaging of any orientation. Therefore, doctors often use MRI brain tumor images to analyze and process brain tumors. In these images, the tumor structure is only characterized by grayscale changes, and the developed images obtained by different equipment and different conditions may also be different. This makes it difficult for traditional image segmentation methods to deal well with the segmentation of brain tumor images. Considering that the traditional single-mode MRI brain tumor images contain incomplete brain tumor information, it is difficult to segment the single-mode brain tumor images to meet clinical needs. In this paper, a sparse subspace clustering (SSC) algorithm is introduced to process the diagnosis of multimodal MRI brain tumor images. In the absence of added noise, the proposed algorithm has better advantages than traditional methods. Compared with the top 15 in the Brats 2015 competition, the accuracy is not much different, being basically stable between 10 and 15. In order to verify the noise resistance of the proposed algorithm, this paper adds 5%, 10%, 15%, and 20% Gaussian noise to the test image. Experimental results show that the proposed algorithm has better noise immunity than a comparable algorithm.


Subject(s)
Algorithms , Brain Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Multiparametric Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnosis , Cluster Analysis , Computational Biology , Computer Simulation , Fuzzy Logic , Humans , Image Interpretation, Computer-Assisted/statistics & numerical data , Mathematical Concepts , Models, Neurological , Multiparametric Magnetic Resonance Imaging/statistics & numerical data , Neuroimaging/methods , Neuroimaging/statistics & numerical data , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...