Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Divers ; 45(3): 337-346, 2023 May.
Article in English | MEDLINE | ID: mdl-37397600

ABSTRACT

Verticillium wilt, caused by Verticillium dahliae, seriously restricts the yield and quality improvement of cotton. Previous studies have revealed the involvement of WRKY members in plant defense against V. dahliae, but the underlying mechanisms involved need to be further elucidated. Here, we demonstrated that Gossypium hirsutum WRKY DNA-binding protein 33 (GhWRKY33) functions as a negative regulator in plant defense against V. dahliae. GhWRKY33 expression is induced rapidly by V. dahliae and methyl jasmonate, and overexpression of GhWRKY33 reduces plant tolerance to V. dahliae in Arabidopsis. Quantitative RT-PCR analysis revealed that expression of several JA-associated genes was significantly repressed in GhWRKY33 overexpressing transgenic plants. Yeast one-hybrid analysis revealed that GhWRKY33 may repress the transcription of both AtERF1 and GhERF2 through its binding to their promoters. Protein-protein interaction analysis suggested that GhWRKY33 interacts with G. hirsutum JASMONATE ZIM-domain protein 3 (GhJAZ3). Similarly, overexpression of GhJAZ3 also decreases plant tolerance to V. dahliae. Furthermore, GhJAZ3 acts synergistically with GhWRKY33 to suppress both AtERF1 and GhERF2 expression. Our results imply that GhWRKY33 may negatively regulate plant tolerance to V. dahliae via the JA-mediated signaling pathway.

2.
Animals (Basel) ; 12(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35625108

ABSTRACT

Studying the spatial and temporal interactions between sympatric animal species is essential for understanding the mechanisms of interspecific coexistence. Both Asiatic black bears (Ursus thibetanus) and brown bears (Ursus arctos) inhabit northeastern China, but their spatial-temporal patterns and the mechanism of coexistence were unclear until now. Camera traps were set in Heilongjiang Taipinggou National Nature Reserve (TPGNR) from January 2017 to December 2017 to collect photos of the two sympatric bear species. The Pianka index, kernel density estimation, and the coefficient of overlap were used to analyze the spatial and temporal patterns of the two sympatric species. Our findings indicated that the spatial overlap between Asiatic black bears and brown bears was low, as Asiatic black bears occupied higher elevations than brown bears. The two species' temporal activity patterns were similar at sites where only one species existed, yet they were different at the co-occurrence sites. Asiatic black bears and brown bears are competitors in this area, but they can coexist by changing their daily activity patterns. Compared to brown bears, Asiatic black bears behaved more diurnally. Our study revealed distinct spatial and temporal differentiation within the two species in TPGNR, which can reduce interspecific competition and facilitate coexistence between them.

3.
J Exp Bot ; 73(1): 182-196, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34435636

ABSTRACT

The plant-specific VQ gene family participates in diverse physiological processes but little information is available on their role in leaf senescence. Here, we show that the VQ motif-containing proteins, Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 are negative regulators of abscisic acid (ABA)-mediated leaf senescence. Loss of SIB1 and SIB2 function resulted in increased sensitivity of ABA-induced leaf senescence. In contrast, overexpression of SIB1 significantly delayed this process. Moreover, biochemical studies revealed that SIBs interact with WRKY75 transcription factor. Loss of WRKY75 function decreased sensitivity to ABA-induced leaf senescence, while overexpression of WRKY75 significantly accelerated this process. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoters of GOLDEN 2-LIKE1(GLK1) and GLK2, to repress their expression. SIBs repress the transcriptional function of WRKY75 and negatively regulate ABA-induced leaf senescence in a WRKY75-dependent manner. In contrast, WRKY75 positively modulates ABA-mediated leaf senescence in a GLK-dependent manner. In addition, SIBs inhibit WRKY75 function in ABA-mediated seed germination. These results demonstrate that SIBs can form a complex with WRKY75 to regulate ABA-mediated leaf senescence and seed germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Germination , Plant Senescence , Protein Binding , Seeds/metabolism , Sigma Factor
4.
Ecol Evol ; 9(23): 13278-13293, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871644

ABSTRACT

Climate change has direct impacts on wildlife and future biodiversity protection efforts. Vulnerability assessment and habitat connectivity analyses are necessary for drafting effective conservation strategies for threatened species such as the Tibetan brown bear (Ursus arctos pruinosus). We used the maximum entropy (MaxEnt) model to assess the current (1950-2000) and future (2041-2060) habitat suitability by combining bioclimatic and environmental variables, and identified potential climate refugia for Tibetan brown bears in Sanjiangyuan National Park, China. Next, we selected Circuit model to simulate potential migration paths based on current and future climatically suitable habitat. Results indicate a total area of potential suitable habitat under the current climate scenario of approximately 31,649.46 km2, of which 28,778.29 km2 would be unsuitable by the 2050s. Potentially suitable habitat under the future climate scenario was projected to cover an area of 23,738.6 km2. Climate refugia occupied 2,871.17 km2, primarily in the midwestern and northeastern regions of Yangtze River Zone, as well as the northern region of Yellow River Zone. The altitude of climate refugia ranged from 4,307 to 5,524 m, with 52.93% lying at altitudes between 4,300 and 4,600 m. Refugia were mainly distributed on bare rock, alpine steppe, and alpine meadow. Corridors linking areas of potentially suitable brown bear habitat and a substantial portion of paths with low-resistance value were distributed in climate refugia. We recommend various actions to ameliorate the impact of climate change on brown bears, such as protecting climatically suitable habitat, establishing habitat corridors, restructuring conservation areas, and strengthening monitoring efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...