Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(15): 7992-8001, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38561994

ABSTRACT

Two-dimensional (2D) materials with a pentagonal structure have many unique physical properties and great potential for applications in electrical, thermal, and optical fields. In this paper, the intrinsic thermal transport properties of 2D pentagonal CX2 (X = N, P, As, and Sb) are comparatively investigated. The results show that penta-CN2 has a high thermal conductivity (302.7 W/mK), while penta-CP2, penta-CAs2, and penta-CSb2 have relatively low thermal conductivities of 60.0, 36.9, and 11.8 W/mK, respectively. The main reason for the high thermal conductivity of penta-CN2 is that the small atomic mass of the N atom is comparable to that of the C atom, resulting in a preferable pentagonal structure with stronger bonds and thus a higher phonon group velocity. The reduction in the thermal conductivity of the other three materials is mainly due to the gradually increased atomic mass from P to Sb, which reduces the phonon group velocity. In addition, the large atomic mass difference does not result in a huge enhancement of the anharmonicity or weakening of the phonon relaxation time. The present work is expected to deepen the understanding of the thermal transport of main group V 2D pentagonal carbons and pave the way for their future applications, also, providing ideas for finding potential thermal management materials.

2.
Phys Chem Chem Phys ; 25(46): 31781-31790, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37965932

ABSTRACT

Thermal conductivity (κ, which consists of electronic thermal conductivity κe and lattice thermal conductivity κl), as an essential parameter in thermal management applications, is a critical physical quantity to measure the heat transfer performance of materials. To seek low-κ materials for heat-related applications, such as thermoelectric materials and thermal barrier coatings. In this study, based on a complex cluster design, we report a new class of two-dimensional (2D) transition metal dichalcogenides (TMDs): T-Au6X2 (X = S, Se, and Te) with record ultralow κl values. At room temperature, the κl values of T-Au6S2, T-Au6Se2, and T-Au6Te2 are 0.25 (0.23), 0.30 (0.21), and 0.12 (0.10) W m-1 K-1 along the x-axis (y-axis) direction, respectively, exhibiting good thermal insulation. The ultralow κl originates from strong phonon softening and suppression, especially for the phonon with frequency 0-1 THz. In addition, T-Au6Te2 holds the lowest group velocity and phonon relaxation time among the three T-Au6X2 monolayers. Our study provides an alternative approach for achieving ultralow κl through complex cluster replacement. Meanwhile, this new class of TMDs is expected to shine in thermal insulation and thermoelectricity due to their ultralow κl values.

SELECTION OF CITATIONS
SEARCH DETAIL
...