Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Struct Funct ; 44(1): 41-50, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30713220

ABSTRACT

Infantile hemangioma is the most common soft tissue tumors in childhood. In clinic, propranolol is widely used for infantile hemangioma therapy. However, some of the infantile hemangioma patients display resistance to propranolol treatment. Previous studies show that miR-187-3p is inhibited in hepatocellular carcinoma and lung cancer, while the role of miR-187-3p in infantile hemangioma remains unclear. In the present study, we explore the biological role of miR-187-3p in infantile hemangioma. The mRNA and protein levels of related genes were detected by real-time PCR and Western blotting. CCK8 assay was used to detect cell viability and IC50 values of propranolol. Cell apoptosis was detected by Caspase-3 Activity assay. Luciferase reporter assay and biotin RNA pull down assay were used to detect the interaction between miR-187-3p and the targeted gene. MiR-187-3p was down-regulated in infantile hemangioma tissues and promoted propranolol sensitivity of HemSCs. Mechanically, NIPBL was the direct target of miR-187-3p in HemSCs. NIPBL downregulation inhibited propranolol resistance of HemSCs. Re-introduction of NIPBL reversed miR-187-3p-meidated higher propranolol sensitivity of HemSCs. MiR-187-3p enhanced propranolol sensitivity of hemangioma stem cells via targeting NIPBL. MiR-187-3p may serve as a novel prognostic indicator and potential target for infantile hemangioma therapy.Key words: MiR-187-3p, infantile hemangioma, propranolol, resistance, NIPBL.


Subject(s)
Hemangioma/genetics , Hemangioma/pathology , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , Propranolol/pharmacology , Base Sequence , Cell Cycle Proteins , Cell Proliferation/drug effects , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , Humans , Infant , Neoplastic Stem Cells/pathology , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...