Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(16): 28658-28667, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299056

ABSTRACT

Low-phase-noise and pure-spectrum Raman light is vital for high-precision atom interferometry by two-photon Raman transition. A preferred and prevalent solution for Raman light generation is electro-optic phase modulation. However, phase modulation inherently brings in double sidebands, resulting in residual sideband effects of multiple laser pairs beside Raman light in atom interferometry. Based on a well-designed rectangular fiber Bragg grating and a plain electro-optic modulator, optical single-sideband modulation has been realized at 1560 nm with a stable suppression ratio better than -25 dB despite of intense temperature variations. After optical filtration and frequency doubling, a robust phase-coherent Raman light at 780 nm is generated with a stable SNR of better than -19 dB and facilitates measuring the local gravity successfully. This FBG-based all-fiber single-sideband-modulated Raman light source, proposed for the first time and characterized as robust, compact and low-priced, is practical and potential for field applications of portable atom interferometry.

2.
Opt Lett ; 47(12): 2983-2986, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35709031

ABSTRACT

Monitoring and stabilizing the power ratio of laser pairs is significant for high-precision atom interferometers, especially as the compact electro-optic-modulated all-fiber laser system prevails. In this Letter, we demonstrate a novel, to the best of our knowledge, method to in situ probe the relative power of laser pairs and to stabilize the power ratio of two Raman lasers using a high-dispersion virtually imaged phased array (VIPA) etalon. Sub-microsecond resolution on probing laser power transformation during the atom interferometer sequence is achieved and the power ratio of two Raman lasers (PRTR) is tightly locked with high bandwidth despite environmental disturbances, showing an Allan deviation of 4.39 × 10-5 at 1000 s averaging time. This method provides a novel way to stabilize the PRTR and diagnose multi-frequency laser systems for atom interferometers, and it could find potential applications in broad quantum sensing scenarios.

3.
Rev Sci Instrum ; 92(6): 063206, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243555

ABSTRACT

Stimulated Raman adiabatic passage (STIRAP) is an effective technique to transfer state coherently with the features of both high fidelity and robustness in the field of quantum information and quantum precise measurement. In this note, we present a simple method to generate arbitrary laser shapes for STIRAP by controlling the modulation depth of the electro-optic modulator (EOM) and the diffraction efficiency of the acoustic-optic modulator (AOM) simultaneously. The EOM and AOM are used to control the power ratio between the two Raman lasers (pumping laser and Stokes laser) and the total power, respectively. Compared with the traditional method by combining two Raman lasers separated in space, this method has the advantage of simple structure and insensitivity to the environment disturbance, which would degrade the relative phase noise between two Raman lasers.

4.
Rev Sci Instrum ; 92(3): 033203, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820042

ABSTRACT

Phase noise of Raman lasers is a major source of noise for a Raman-type cold atom interferometer, which is traditionally measured using the signal source analyzer. We report here an atom-based method to measure the phase noise performance between two Raman lasers. By analyzing and calibrating the system noise sources, we can characterize the contribution of phase noise from the total deviation of the relative atom population at the middle of the interference fringe. Knowing the transfer function specified by the operation sequence of the interferometer, we can obtain the transfer function and power spectrum density of the phase noise term. By varying the time sequences of the interferometer, we can measure the white phase noise floor and the phase noise performance over a large range of Fourier frequencies from 1 to 100 000 Hz with a minor difference of 1 dB compared with results from the traditional method using a signal analyzer, which proves the validity of the atom-based method. Compared with the traditional measurement method, the atom-based method can have higher accuracy and have the ability of self-calibrating.

5.
Rev Sci Instrum ; 91(10): 103109, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138613

ABSTRACT

Light shift produced by the AC Stark effect is one of the major factors limiting the accuracy and long-term stability of a cold atom interferometer. The first order light shift can be canceled by fixing the power ratio of the Raman beams at a specified value. We report here a new method to stabilize the power ratio of the two Raman lasers with ∼100 kHz locking bandwidth, suppressing the effect of the first order light shift. We first mixed the two Raman lasers (at different optical frequencies) with a reference beam and then used two Schottky diode detectors to extract the corresponding beat note signals for each beam, which are much easier to be manipulated and processed as they are in the microwave band. The stability of the power ratio is improved by three orders of magnitude from 5.84 × 10-3 to 3.51 × 10-6 at 1 s averaging time and reaches 1.59 × 10-7 at 10 000 s integrating time when the servo loop is engaged. This method can be used in other precise quantum measurement based on the stimulated Raman transition and can be applied to compact inertial sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...