Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
JAMA Netw Open ; 7(6): e2415310, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38861260

ABSTRACT

Importance: Peceleganan spray is a novel topical antimicrobial agent targeted for the treatment of skin wound infections. However, its efficacy and safety remain unclear. Objective: To assess the safety and efficacy of peceleganan spray for the treatment of wound infections. Design, Setting, and Participants: This multicenter, open-label, phase 3 randomized clinical trial recruited and followed up 570 adult patients diagnosed with secondary open wound infections from 37 hospitals in China from August 23, 2021, to July 16, 2022. Interventions: Patients were randomized to 2 groups with a 2:1 allocation. One group received treatment with 2% peceleganan spray (n = 381) and the other with 1% silver sulfadiazine (SSD) cream (n = 189). Main Outcomes and Measures: The primary efficacy outcome was the clinical efficacy rate (the number of patients fulfilling the criteria for efficacy of the number of patients receiving the treatment) on the first day following the end of treatment (day 8). The secondary outcomes included the clinical efficacy rate on day 5 and the bacterial clearance rate (cases achieving negative bacteria cultures after treatment of all cases with positive bacteria cultures before treatment) on days 5 and 8. The safety outcomes included patients' vital signs, physical examination results, electrocardiographic findings, blood test results, and adverse reactions. Results: Among the 570 patients randomized to 1 of the 2 groups, 375 (98.4%) in the 2% peceleganan treatment group and 183 (96.8%) in the 1% SSD control group completed the trial (n = 558). Of these, 361 (64.7%) were men, and the mean (SD) age was 48.6 (15.3) years. The demographic characteristics were similar between groups. On day 8, clinical efficacy was achieved by 339 patients (90.4%) in the treatment group and 144 (78.7%) in the control group (P < .001). On day 5, clinical efficacy was achieved by 222 patients (59.2%) in the treatment group and 90 (49.2%) in the control group (P = .03). On day 8, bacterial clearance was achieved by 80 of 334 patients (24.0%) in the treatment group and in 75 of 163 (46.0%) in the control group (P < .001). On day 5, bacterial clearance was achieved by 55 of 334 patients (16.5%) in the treatment group and 50 of 163 (30.7%) in the control group (P < .001). The adverse events related to the application of peceleganan spray and SSD cream were similar. Conclusions and Relevance: This randomized clinical trial found that peceleganan spray is a safe topical antimicrobial agent with a satisfactory clinical efficacy rate for the treatment of skin wound infections, while the effectiveness of bacterial clearance remains uncertain. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2100047202.


Subject(s)
Wound Infection , Humans , Male , Female , Middle Aged , Adult , Wound Infection/drug therapy , Anti-Infective Agents, Local/therapeutic use , Anti-Infective Agents, Local/administration & dosage , China , Silver Sulfadiazine/therapeutic use , Silver Sulfadiazine/administration & dosage , Treatment Outcome , Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage
2.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38662948

ABSTRACT

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Subject(s)
Fluorescent Dyes , Foam Cells , Lipid Droplets , Fluorescent Dyes/chemistry , Foam Cells/metabolism , Foam Cells/pathology , Animals , Mice , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Lysosomes/metabolism , Atherosclerosis/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Optical Imaging , Humans , RAW 264.7 Cells , Hydrogen-Ion Concentration , Color
3.
Inorg Chem ; 63(9): 4249-4259, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38364203

ABSTRACT

The emission of volatile organic compounds (VOCs) significantly contributes to air pollution and poses a serious threat to human health. Benzene, one of the most toxic VOCs, is difficult for the human body to metabolize and is classified as a Group 1 carcinogen. The development of efficient adsorbents for removing trace amounts of benzene from ambient air is thus of great importance. In this work, we studied the benzene adsorption properties of four Zr-based metal-organic frameworks (Zr-MOFs) through static volumetric and dynamic breakthrough experiments. Two previously reported Zr-MOFs, BUT-12 and STA-26, were prepared with a tritopic carboxylic acid ligand (H3L1) functionalized with three methyl groups, and STA-26 is a 2-fold interpenetrated network of BUT-12. Two new isoreticular Zr-MOFs, BUT-12-Et and STA-26-Et, were synthesized using a similar ligand, H3L2, where the methyl groups are replaced with ethyl groups. There are mesopores in BUT-12 and BUT-12-Et and micropores in STA-26 and STA-26-Et. The four Zr-MOFs all showed high stability in liquid water and acidic aqueous solutions. The microporous STA-26 and STA-26-Et showed much higher benzene uptakes than mesoporous BUT-12 and BUT-12-Et at room temperature under low pressures. Particularly, the benzene adsorption capacity of STA-26-Et was high up to 2.21 mmol/g at P/P0 = 0.001 (P0 = 12.78 kPa), higher than those of the other three Zr-MOFs and most reported solid adsorbents. Breakthrough experiments confirmed that STA-26-Et could effectively capture trace benzene (10 ppm) from dry air; however, its benzene capture capacity was reduced by 90% under humid conditions (RH = 50%). Coating of the crystals of STA-26-Et with polydimethylsiloxane (PDMS) increased the hydrophobicity of the exterior MOF surfaces, leading to a more than 2-fold improvement in its benzene capture capacity in the breakthrough experiment under humid condition. PDMS coating of STA-26-Et likely slowed down the water adsorption process, and thus, the adsorbent afforded more efficient capture of benzene. This work demonstrates that modifying both the interior and exterior surfaces of MOFs can effectively enhance their performance in capturing trace benzene from ambient air, even under humid conditions. This finding is meaningful for the development of new adsorbents for effective air purification applications.

4.
Anal Chem ; 96(6): 2692-2701, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38305871

ABSTRACT

In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.


Subject(s)
Biosensing Techniques , Nucleic Acids , CRISPR-Cas Systems/genetics , Survivin/genetics , Biomarkers , Point-of-Care Testing
5.
Foods ; 12(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37685150

ABSTRACT

Monascus, a key player in fermented food production, is known for generating Monascus pigments (MPs) and monacolin K (MK), possessing bioactive properties. However, the limited stability of MPs and mycotoxin citrinin (CTN) constrain the Monascus industry. Extremolytes like ectoine, derived from bacteria, exhibit cytoprotective potential. Here, we investigated the impact of ectoine on Monascus purpureus ATCC 16365, emphasizing development and secondary metabolism. Exogenous 5 mM ectoine supplementation substantially increased the yields of MPs and MK (105%-150%) and reduced CTN production. Ectoine influenced mycelial growth, spore development, and gene expression in Monascus. Remarkably, ectoine biosynthesis was achieved in Monascus, showing comparable effects to exogenous addition. Notably, endogenous ectoine effectively enhanced the stability of MPs under diverse stress conditions. Our findings propose an innovative strategy for augmenting the production and stability of bioactive compounds while reducing CTN levels, advancing the Monascus industry.

6.
Inorg Chem ; 62(31): 12329-12336, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37478416

ABSTRACT

Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Metal-organic frameworks (MOFs) are a class of promising adsorbents for light hydrocarbon separations. Among them, the so-called "flexible-robust" MOFs combine the advantages of flexibility and rigidity in structure and could show enhanced gas separation selectivity as well as improved gas uptake at low pressure. Interpenetrated MOFs offer a platform to explore the "flexible-robust" feature of MOFs based on their subnetwork displacement in the process of gas adsorption. Herein, we present two hydrolytically stable MOFs (BUT-308 and BUT-309) with interpenetrated structures and fascinating propyne/propylene separation performance. BUT-308 is composed of interpenetrated 2D Cu(BDC-NH2)BPB layers (H2BDC-NH2 = 2-aminobenzene-1,4-dicarboxylic acid; BPB = 1,4-bis(4-pyridyl)benzene), while BUT-309 consists of twofold interpenetrated 3D pillared-layer Cu2(BDC-NH2)2(BPB-CF3) nets (BPB-CF3 = 2-trifluoromethyl-1,4-bis(4-pyridyl)benzene). Gas adsorption measurements showed that BUT-309 was a "flexible-robust" adsorbent with multistep adsorption isotherms for C3H4 rather than C3H6 at a wide temperature range. The guest-dependent pore-opening behavior endows BUT-309 with high potential in the C3H4/C3H6 separation. The C3H4 adsorption measurements of BUT-309 at 273-323 K showed that the lowering of the temperature induced the pore-opening action at lower pressure. Column breakthrough experiments further confirmed the capability of BUT-309 for the efficient removal of C3H4 from a C3H4/C3H6 binary gas, and the C3H6 processing capacity at 273 K (15.7 cm3 g-1) was higher than that at 298 K (35.2 cm3 g-1). This work shows a rare example of "flexible-robust" MOFs and demonstrated its high potential for C3H4/C3H6 separation.

7.
Article in English | MEDLINE | ID: mdl-37329778

ABSTRACT

Triazoles are common agents for invasive fungal infections, while therapeutic drug monitoring is needed to improve antifungal efficacy and reduce toxicity. This study aimed to exploit a simple and reliable liquid chromatography-mass spectrometry method for high-throughput monitoring of antifungal triazoles in human plasma using UPLC-QDa. Triazoles in plasma were separated by chromatography on a Waters BEH C18 column and detected using positive ions electrospray ionization fitted with single ion recording. M+ for fluconazole (m/z 307.11) and voriconazole (m/z 350.12), M2+ for posaconazole (m/z 351.17), itraconazole (m/z 353.13) and ketoconazole (m/z 266.08, IS) were selected as representative ions in single ion recording mode. The standard curves in plasma showed acceptable linearities over 1.25-40 µg/mL for fluconazole, 0.47-15 µg/mL for posaconazole and 0.39-12.5 µg/mL for voriconazole and itraconazole. The selectivity, specificity, accuracy, precision, recovery, matrix effect, and stability met acceptable practice standards under Food and Drug Administration method validation guidelines. This method was successfully applied to the therapeutic monitoring of triazoles in patients with invasive fungal infections, thereby guiding clinical medication.


Subject(s)
Antifungal Agents , Invasive Fungal Infections , Humans , Itraconazole , Voriconazole , Fluconazole , Tandem Mass Spectrometry/methods , Triazoles , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
8.
Clin Oral Investig ; 27(8): 4531-4539, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285103

ABSTRACT

OBJECTIVES: The prediction of posttreatment outcomes is conducive to the final determination of ideal therapeutic options. However, the prediction accuracy in orthodontic class III cases is unclear. Therefore, this study conducted exploration on prediction accuracy in orthodontic class III patients using the Dolphin® software. MATERIALS AND METHODS: In this retrospective study, lateral cephalometric radiographs of pre- and posttreatment were collected from 28 angle class III adults who received completed non-orthognathic orthodontic therapy (8 males, 20 females; mean age = 20.89 ± 4.26 years). The values of 7 posttreatment parameters were recorded and inserted into the Dolphin® Imaging software to generate a predicted outcome, and then the prediction radiograph and actual posttreatment radiograph were superimposed and compared in terms of soft tissue parameters and landmarks. RESULTS: The prediction showed significant differences with the actual outcomes in nasal prominence (the difference between the prediction and the actual value was - 0.78 ± 1.82 mm), the distance from the lower lip to the H line (0.55 ± 1.11 mm), and the distance from the lower lip to the E line (0.77 ± 1.62 mm) (p < 0.05). Point subnasale (Sn) (an accuracy of 92.86% in the horizontal direction and 100% in the vertical direction in 2 mm) and point soft tissue A (ST A) (an accuracy of 92.86% in the horizontal direction and 85.71% in the vertical direction in 2 mm) were proven to be the most accurate landmarks, while the predictions in the chin region were relatively inaccurate. Furthermore, the predictions in the vertical direction were of higher accuracy compared to the horizontal direction except for the points around the chin. CONCLUSIONS: The Dolphin® software demonstrated acceptable prediction accuracy in midfacial changes in class III patients. However, there were still limitations for changes in the chin and lower lip prominence. CLINICAL RELEVANCE: Clarifying the accuracy of Dolphin® software in predicting soft tissue changes of orthodontic class III cases will facilitate physician-patient communication and clinical treatment.


Subject(s)
Dolphins , Malocclusion, Angle Class III , Male , Female , Animals , Face/anatomy & histology , Retrospective Studies , Chin/anatomy & histology , Software , Lip/diagnostic imaging , Cephalometry/methods , Mandible
9.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1518-1525, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005839

ABSTRACT

Since Curcumae Radix decoction pieces have multiple sources, it is difficult to distinguish depending on traditional cha-racters, and the mixed use of multi-source Curcumae Radix will affect its clinical efficacy. Heracles Neo ultra-fast gas phase electronic nose was used in this study to quickly identify and analyze the odor components of 40 batches of Curcumae Radix samples from Sichuan, Zhejiang, and Guangxi. Based on the odor fingerprints established for Curcumae Radix decoction pieces of multiple sources, the odor components was identified and analyzed, and the chromatographic peaks were processed and analyzed to establish a rapid identification method. Principal component analysis(PCA), discriminant factor analysis(DFA), and soft independent modeling cluster analysis(SIMCA) were constructed for verification. At the same time, one-way analysis of variance(ANOVA) combined with variable importance in projection(VIP) was employed to screen out the odor components with P<0.05 and VIP>1, and 13 odor components such as ß-caryophyllene and limonene were hypothesized as the odor differential markers of Curcumae Radix decoction pieces of diffe-rent sources. The results showed that Heracles Neo ultra-fast gas phase electronic nose can well analyze the odor characteristics and rapidly and accurately discriminate Curcumae Radix decoction pieces of different sources. It can be applied to the quality control(e.g., online detection) in the production of Curcumae Radix decoction pieces. This study provides a new method and idea for the rapid identification and quality control of Curcumae Radix decoction pieces.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/analysis , Electronic Nose , China , Plant Roots/chemistry , Limonene/analysis , Chromatography, High Pressure Liquid
10.
Transl Androl Urol ; 12(1): 90-96, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36760872

ABSTRACT

Background: Laparoendoscopic single-site (LESS) surgery is performed to further narrow the incisions and reduce tissue injury. It has been more than10 years since the surgery was first described. However, there is still no report on the results of 10-year follow-up. This study evaluated the use of long-term oncology and the renal outcomes of LESS radical nephrectomy (LESS-RN) in the treatment of localized renal cancer. Methods: We retrospectively analyzed the clinical data of patients treated with LESS-RN at Changhai Hospital from 2009 to 2012. Patients with localized kidney cancer who were followed-up for at least 10 years were included in the study. The baseline data and major perioperative outcome variables were analyzed. Overall survival (OS) and cancer-specific survival (CSS) were calculated using the Kaplan-Meier method. Results: A total of 48 patients were included in the study, which had a median follow-up of 11 years (interquartile range, 10.7-11.8 years). The 10-year OS and CSS rates were 87.5% [42/48; 95% confidence interval (CI): 0.778-0.972] and 97.9% (47/48; 95% CI: 0.937-1.021), respectively. At the most recent follow-up, there were 5 patients with a chronic kidney disease stage ≥3. Among these 5 patients, 3 developed uremia and required continuous dialysis. Conclusions: For localized renal cancer, LESS-RN is safe and effective with excellent long-term oncology controllability and good functional outcomes. Prospective studies with large sample sizes need to be conducted to validate our results.

11.
J Funct Biomater ; 14(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36826876

ABSTRACT

During fixed orthodontic treatment, white spot lesions are prevalent issues associated with cariogenic bacteria. This study aims to construct an orthodontic adhesive containing nanoparticles of amorphous calcium phosphate-polydopamine-Ag (NPA) fillers to combat white spot lesions. The NPA fillers were prepared and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The biocompatibility of the fillers was evaluated. A colony counting test evaluated the antibacterial property of the fillers against Streptococcus mutans (S. mutans). NPA fillers were mixed with orthodontic adhesive (Transbond XT) at different weight ratios (0, 0.1, 0.2, 0.3, and 0.5 wt.%). The shear bond strength and antibacterial properties were then further investigated. The results showed that NPA was prepared successfully, with good antibacterial properties. The cell survival rate of all groups of fillers was higher than 70%, showing good biocompatibility. Moreover, the shear bond strength of the orthodontic adhesive with 0.2 wt.% NPA fillers was 11.89 ± 1.27 MPa, meeting the minimal clinical bond strength requirements of 7.8 MPa. Furthermore, the orthodontic adhesive resin blocks and the extract displayed good antibacterial properties, with the number of colonies decreasing significantly (p < 0.001). Taken together, we think that an orthodontic adhesive with NPA may have a good application potential for the prevention and treatment of white spot lesions.

12.
Sensors (Basel) ; 23(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679534

ABSTRACT

Head-worn displays (HWDs) as timely condition monitoring are increasingly used in aviation. However, interface design characteristics that mainly affect HWD use have not been fully investigated. The aim of this study was to examine the effects of several important interface design characteristics (i.e., the distance between calibration lines and the layouts of vertical and horizontal scale belts) on task performance and user preference between different conditions of display, i.e., HWD or head-up display (HUD). Thirty participants joined an experiment in which they performed flight tasks. In the experiment, the calibration lines' distance was set to three different levels (7, 9 and 11 mrad), and the scale belt layouts included horizontal and vertical scale belt layouts. The scale belts were set as follows: the original vertical scale belt width was set as L, and the horizontal scale belt height as H. The three layouts of the vertical calibration scale belt used were 3/4H, H and 3H/2. Three layouts of horizontal calibration scale belts were selected as 3L/4, L and 3L/2. The results indicated that participants did better with the HWD compared to the HUD. Both layouts of vertical and horizontal scale belts yielded significant effects on the users' task performance and preference. Users showed the best task performance while the vertical calibration scale belts were set as H and horizontal calibration scale belts were set as L, and users generally preferred interface design characteristics that could yield an optimal performance. These findings could facilitate the optimal design of usable head-worn-display technology.


Subject(s)
Aviation , Smart Glasses , Humans , Task Performance and Analysis , User-Computer Interface , Head
13.
J Burn Care Res ; 44(3): 715-722, 2023 May 02.
Article in English | MEDLINE | ID: mdl-32006002

ABSTRACT

The aim of the study was to investigate the effects of the rhGM-CSF gel on third-degree frostbite wounds. Sixty-two patients who had suffered third-degree frostbite on their hand or foot (91 wounds in total) were selected using a convenience sampling method and randomly allocated to two groups: the rhGM-CSF group(31patients,45 frostbite wounds) received the rhGM-CSF gel when wound dressing change daily; however, the control group (31patients, 46 frostbite wounds) received aloe glue. The wound healing time, the score of inflammation about the wound and the positive bacterial culture of wound secretions were used to measure outcomes, respectively. Data were analyzed using SPSS (25.0), Student's t test or Mann-Whitney U test and chi-square test or Fisher exact test were selected, as appropriate. The healing time of the rhGM-CSF group was (12.2 ± 5.0) days, which was significantly shorter than that of the control group (15.5 ± 4.7) days (P < .0001). The rhGM-CSF group's wound inflammation scores on the 7th and 14th day of treatment were (0.96 ± 0.21) and (1.88 ± 0.29), respectively, which were better than those of the control group (1.12 ± 0.24) and (1.38 ± 0.15) (both P < .0001). The positive bacterial culture of wound secretions in the rhGM-CSF group was also better than that in the control group on the 3rd, 7th, and 14th day after treatment (P = .027, .004, .030, respectively). According to the results, using rhGM-CSF gel considerably increases the speed of frostbite wounds healing, and have an effect on protecting third-degree frostbite wounds regarding the positive effects. Trial Registration: This trial was registered in the Chinese Clinical Trial Register, ChiCTR1900021299.


Subject(s)
Burns , Frostbite , Humans , Burns/drug therapy , Recombinant Proteins/therapeutic use , Frostbite/drug therapy , China , Inflammation
14.
Ann Surg ; 277(1): 43-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35781462

ABSTRACT

OBJECTIVE: To assess the safety and efficacy of antimicrobial peptide PL-5 (Peceleganan) spray in the treatment of wound infections. BACKGROUND: Antimicrobial peptide PL-5 spray is a novel topical antimicrobial agent. METHODS: We conducted a multicenter, open-label, randomized, controlled phase IIb clinical trial to evaluate the efficacy and safety of PL-5 spray, as compared with silver sulfadiazine, in patients with skin wound infections. The primary efficacy outcome was the clinical efficacy rate on the first day after ending the treatment (D8). The secondary efficacy outcome was the clinical efficacy rate on the fifth day posttreatment (D5), the bacteria clearance rate, and the overall efficacy rate at the mentioned 2 time points. The safety outcomes included adverse reactions and pharmacokinetic analysis posttreatment. RESULTS: A total of 220 patients from 27 hospitals in China were randomly assigned to 4 groups. On D8, the efficacy rate was 100.0%, 96.7%, 96.7% for the 1‰ PL-5, 2‰ PL-5, 4‰ PL-5 groups, respectively, as compared with 87.5% for the control group. The efficacy rate among the 4 groups was significantly different ( P <0.05). On D5, the efficacy rate was 100.0%, 93.4%, 98.3% for the 1‰ PL-5, 2‰ PL-5, 4‰ PL-5 groups, respectively, as compared with 82.5% for the control group. The efficacy rate among the 4 groups was significantly different ( P <0.05). The blood concentration of PL-5 was not detectable in pharmacokinetic analysis. No severe adverse event related to the application of PL-5 was reported. CONCLUSIONS: Antimicrobial peptide PL-5 spray is safe and effective for the treatment of skin wound infections. TRIAL REGISTRATION: ChiCTR2000033334.


Subject(s)
Anti-Infective Agents, Local , Wound Infection , Humans , Treatment Outcome , Bacteria , China , Double-Blind Method
15.
Water Res ; 228(Pt A): 119360, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36402060

ABSTRACT

Bubble aeration has been widely applied in water/wastewater treatment, however its low gas utilization rate results in high energy consumption. Application of micro-nanobubbles (MNB) has emerged as a process with the potential to significantly increase gas utilisation due to their high relative surface area and high gas-liquid mass transfer efficiency. In this study, we demonstrate through calibrated models that MNB of an optimum bubble size can shrink and burst at or below the water surface enabling (1) all encapsulated gas to thoroughly dissolve in water, and (2) the bursting of nanobubbles to potentially generate free radicals. Through the understanding of MNB dimensional characteristics and bubble behaviour in water, a dynamic model that integrated force balance (i.e. buoyancy force, gravity, drag force, Basset force and virtual mass force), and mass transfer was developed to describe the rising velocity and radius variation of MNB along its upward trajectory. Unlike for conventional millimetre-sized bubbles, intensive gas dissolution of MNBs led to radius reduction for small bubbles, while a large initial radius triggers bubble swelling. The initial water depth was also crucial, where greater depth could drive the potential for bubble shrinkage so that they were more liable to contract. For example, the optimum bubble size of air (42-194 µm) and oxygen (127-470 µm) MNB that could achieve complete gas transfer (100% gas utilisation) for a range of specific water depths (0.5-10 m) were calculated. The modelling results for microbubbles (10-530 µm) were well validated by the experimental data (R2>0.85). However, the validation of the modelling results for nanobubble (<1 µm) aeration requires further study due to a lack of available empirical data. In this study, the proposed model and analysis provided new insights into understanding bubble dynamics in water and offered fundamental guidance for practitioners looking to upgrade bubble aeration system.


Subject(s)
Gravitation , Water , Microbubbles , Oxygen
16.
J Environ Manage ; 319: 115688, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35834852

ABSTRACT

Tidal flats in the Bohai Rim are facing threats from human activities. Quantifying the carrying capacity and suitability of tidal flats is of great significance to the regional environment and resource management. In this study, the existing social and natural data were collected and the natural conditions of tidal flats, e.g., the distributions and utilization patterns, were investigated through remote sensing image interpretation and field investigation in the Bohai Rim. Then, a multi-index evaluation system was developed with indexes organized under the framework of the analytic hierarchy process (AHP) and the Drivers-State-Impact (DSI) framework, processed by fuzzy evaluation, and weighted by the entropy method. The studies show that the rapid expansion of industry-port-town, salt pans or aquafarms in the Bohai Rim during 1990-2020 squeezed the space of tidal flats. Despite the limitation of the declining resource condition, the carrying capacity of tidal flats in the Bohai Rim increased slightly during 2000-2018 because of the great improvement in economic and ecological conditions. We estimate 59.93% of the land resources are suitable for economic development while others are temporarily unsuitable for reclamation due to their high ecological importance. The land use data and macro-evaluation system of tidal flat utilization patterns herein can provide references for coastal resource management and ecological restoration.


Subject(s)
Conservation of Natural Resources , Ecosystem , China , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Human Activities , Humans , Industry
17.
Proc Inst Mech Eng H ; 236(8): 1157-1168, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35647704

ABSTRACT

In recent years, the triply periodic minimal surface (TPMS)-based scaffolds have been served as one of the crucial types of structures for biological replacements, the energy absorber, etc. Meanwhile, the development of additive manufacturing (AM) has facilitated the production of TPMS scaffolds with complex microstructures. However, the design maps of TPMS scaffolds, especially considering the AM constraints, remain unclear, which has hindered the design and application of TPMS scaffolds. The aims of the present study were to develop an efficient computational modeling framework for investigating the design maps of TPMS scaffolds simultaneously considering the AM constraints, the biological requirements, and the structural anisotropy. To demonstrate the computational framework, five widely-used topologies of the TPMS-based scaffolds (i.e. the Diamond, the Gyroid, the Fischer-Koch S, the F-RD, and the Schwarz P) were used, whose design maps for the surface-to-volume ratio and the effective elastic modulus were also investigated. The results showed that as the porosities increase, the design ranges of the surface-to-volume ratios decreases for all the structures. Compared with the effect of the constraint for the pore size, the minimal structural thickness for AM constraint has a greater effect on the surface-to-volume ratio. Regarding the elastic modulus, in the region of low porosity (approximately 0.5-0.7), the range for the effective elastic modulus of Schwarz P is the widest (approximately 2.24-32.6 GPa), but the Gyroid can achieve both high porosity and low effective elastic modulus (e.g. 0.61 GPa at the porosity of 0.90). These results and the method developed in the present study provided important basis and guidance for the design and application of the TPMS-based porous structures.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Bone and Bones , Computer Simulation , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry
18.
Materials (Basel) ; 15(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35629545

ABSTRACT

The deterioration of mortar has an adverse impact on the deformation and stress state of the masonry arch dam, after freeze-thaw cycles, in long-term operation. The purpose of this paper is to investigate the effect of reinforcement grouting on the stress of a thin masonry arch dam and propose a reasonable grouting method in the case of mortar deterioration. The determination of the ultimate grouting pressure is another main focus. The masonry material was generalized by combining a linear elastic model and the proportional weighted average under the condition of deterioration caused by freeze-thaw cycles. A series of analytical methods were proposed for the research of grouting effect on dam stress, based on which the ultimate grouting pressure is calculated in various cases. Results demonstrate that the dam tensile stress may exceed the allowable value in the following operation. Then, some recommended methods for the grouting layout and the estimation of grouting pressure were put forward by integrating the grouting field test with numerical analysis for reinforcement. The research conclusions might have a guiding significance for the reinforcement of similar projects.

19.
Appl Environ Microbiol ; 88(12): e0059722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35638840

ABSTRACT

Bacterial biodiversity is tightly correlated with ecological functions of natural systems, and bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning. However, the biogeographic pattern and elevational differentiation of sedimentary bacterial diversity have rarely been studied in cross-river systems at a continental scale. This study analyzed the biogeographic patterns and elevational differentiations of the entire, abundant, and rare bacterial (sub)communities as well as the underlying mechanisms across nine rivers that span distinct geographic regions and large elevational gradients in China. We found that bacterial rare and abundant subcommunities shared similar biogeographic patterns and both demonstrated strong distance-decay relationships, despite their distinct community compositions. However, both null model and variation partitioning analysis results showed that while environmental selection governed rare subcommunity assemblies (contribution: 51.9%), dispersal limitation (62.7%) controlled the assembly of abundant subcommunities. The disparity was associated with the broader threshold width of abundant taxa to water temperature and pH variations than rare taxa. Elevation-induced bacterial composition variations were more evident than latitude-induced ones. Some specific operational taxonomic units (OTUs), representing 16.4% of the total sequences, much preferentially and even exclusively lived in high-elevation or low-elevation habitats and demonstrated some adaptations to local conditions. Greater positive: negative link ratios in bacterial co-occurrence networks of low elevations than high elevations (P < 0.05) partly resulted from their harboring higher organic carbon: nitrogen ratios. Together, this study draws a biogeographic picture of sedimentary bacterial communities in a continental-scale riverine system and highlights the importance of incorporating elevation-associated patterns of microbial diversity into riverine microbial ecology studies. IMPORTANCE Bacterial diversity is tightly correlated with the nutrient cycling of river systems. However, previous studies on bacterial diversity are mainly constrained to one single river system, although microbial biogeography and its drivers exhibit strong spatial scale dependence. Moreover, elevational differentiations of bacterial communities across river systems have also rarely been studied. Bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning, and they share similar biogeographic patterns in some environments but not in others. Therefore, we explored the biogeography of the entire, abundant, and rare (sub)communities in nine rivers that cover a wide space range and large elevational gradient in China. Our results revealed that bacterial rare and abundant subcommunities shared similar biogeographic patterns but their assembly mechanisms were much different in these rivers. Moreover, bacterial communities showed evident differentiations between high elevations and low elevations. These findings will facilitate a better understanding of bacterial diversity features in river systems.


Subject(s)
Ecosystem , Rivers , Bacteria/genetics , Biodiversity , China , Rivers/microbiology
20.
Gels ; 8(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35621592

ABSTRACT

Silica aerogels demonstrate great promise in thermal insulation applications, such as energy-efficient buildings, cold-chain transportation, and aerospace engineering. However, the application of pure silica aerogels is limited in high temperature applications (>500 K) due to their transparency in the wavelength of 2−8 µm. The conventional strategy is to dope silica aerogel with solid spherical opacifiers (e.g., SiC, TiO2, and ZrO2) to increase their extinction coefficient; however, incorporating solid opacifiers into silica aerogel matrix improves the structural density of silica aerogel composites. Herein, we propose to improve the extinction coefficient of the silica aerogel by using hollow opacifiers. A theoretical model was developed to investigate the parameters including the outer diameter, shell thickness, and mass fraction on both the radiative thermal conductivity and total thermal conductivity of the silica aerogel composite doped with hollow opacifiers. Our results indicate that doping hollow opacifiers can enable the silica aerogel matrix to achieve lower radiative thermal conductivity when compared to matrices doped with optimally sized solid opacifiers. The total thermal conductivity of silica aerogel doped with hollow opacifiers could be lower than that of the silica aerogel doped with optimally sized solid opacifiers. This work contributes to the understanding of heat transfer within porous materials and guides the structural design of high-temperature thermally insulating materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...