Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 452: 139580, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744129

ABSTRACT

The absence of high-affinity antibodies has hindered the development of satisfactory immunoassays for dichlorvos (DDVP) and trichlorfon (TCP), two highly toxic organophosphorus pesticides. Herein, the de novo synthesis of a novel anti-DDVP hapten was introduced. Subsequently, a specific anti-DDVP monoclonal antibody (Mab) was produced with satisfying affinity to DDVP (IC50: 12.4 ng mL-1). This Mab was highly specific to DDVP, and TCP could readily convert into DDVP under mild alkaline conditions. Leveraging this insight, an indirect competitive ELISA was successfully developed for simultaneous detection of DDVP and TCP. The limit of detection in rice, cabbage and apple for DDVP /TCP was found to be 12.1/14.6 µg kg-1, 7.3/8.8 µg kg-1 and 6.9/8.3 µg kg-1, respectively. This study not only provides an effective strategy for producing a high-quality anti-DDVP Mab but also affords a reliable and cost-effective tool suitable for high-throughput detection of DDVP and TCP in food samples.


Subject(s)
Antibodies, Monoclonal , Dichlorvos , Enzyme-Linked Immunosorbent Assay , Food Contamination , Haptens , Oryza , Trichlorfon , Haptens/chemistry , Haptens/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Animals , Food Contamination/analysis , Enzyme-Linked Immunosorbent Assay/methods , Dichlorvos/analysis , Oryza/chemistry , Oryza/immunology , Trichlorfon/analysis , Trichlorfon/immunology , Mice , Mice, Inbred BALB C , Malus/chemistry , Brassica/chemistry , Brassica/immunology , Immunoassay/methods
2.
Anal Chim Acta ; 1310: 342723, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811138

ABSTRACT

BACKGROUND: Eugenol compounds (EUGs), which share chemical similarities with eugenol, belong to a group of phenolic compounds primarily found in clove oil. They are highly valued by fish dealers due to their exceptional anesthetic properties, playing a crucial role in reducing disease incidence and mortality during the transportation of live fish. Despite their widespread use, the safety of EUGs remains a contentious topic, raising concerns about the safety of aquatic products. This underscores the need for efficient and sensitive analytical methods for detecting EUGs. RESULTS: Nanomaterial-based ratiometric fluorescence immunoassay has gained increasing attention due to its integration of the immunoassay's excellent specificity and compatibility for high-throughput analysis, coupled with the exceptional sensitivity and anti-interference capabilities of ratiometric fluorescence assays. In this study, we developed a sensitive ratiometric fluorescence immunoassay for screening five EUGs. This method employs a broad-specificity monoclonal antibody (mAb) as a recognition reagent, selective for five EUGs. It leverages the horseradish peroxidase (HRP)-triggered formation of fluorescent 2,3-diaminophenazine (DAP) and the quenching of fluorescent gold clusters (Au NCs) for detection. The assay's detection limits for eugenol, isoeugenol, eugenol methyl eugenol, methyl isoeugenol, and acetyl isoeugenol in tilapia fish and shrimp were found to be 9.8/19.5 µg/kg, 0.11/0.22 µg/kg, 19/36 Tilapia ng/kg, 8/16 ng/kg, and 3.0/6.1 µg/kg, respectively. Furthermore, when testing spiked Tilapia fish and shrimp samples, recoveries ranging from 84.1 to 111.9 %, with the coefficients of variation staying below 7.1 % was achieved. SIGNIFICANCE: This work introduces an easy-to-use, broad-specificity, and highly sensitive method for the screening of five EUGs at a pg/mL level, which not only provides a high-throughput strategy for screening eugenol-type fish anesthetics in aquatic products, but also can serve as a benchmark for developing immunoassays for other small molecular pollutants, rendering potent technological support for guarding food safety and human health.


Subject(s)
Eugenol , Gold , Metal Nanoparticles , Eugenol/analysis , Eugenol/analogs & derivatives , Eugenol/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Immunoassay/methods , Limit of Detection
3.
Food Chem X ; 22: 101255, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38444558

ABSTRACT

In this study, three eugenol fragment-containing haptens were synthesized, and a monoclonal antibody (mAb) selective for five commonly-found eugenol compounds (EUGs, i.e., eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, and acetyl isoeugenol) was obtained. Based on this mAb, a broad-spectrum indirect competitive ELISA for high-throughput detection of five EUGs was developed. The detection limits for eugenol, isoeugenol, methyl eugenol, methyl isoeugenol and acetyl isoeugenol in both tilapia and shrimp samples were 25.3/ 50.6 µg/kg, 0.075/0.15 µg/kg, 0.48/0.96 µg/kg, 0.16/0.32 µg/kg, and 18.16/36.32 µg/kg, respectively. The recoveries for five EUGs ranged from 80.4 to 114.0 % with a coefficient of variation less than 11.5 %. Moreover, homology modelling and molecular docking were conducted to elucidate the interactions mechanism of mAb-EUGs. The work provides a promising tool for high-throughput screening of EUGs in aquatic products, which can serve as a benchmark for designing haptens and developing immunoassays for other small molecules.

4.
Food Chem ; 426: 136582, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37321117

ABSTRACT

Sensing alkaline phosphatase (ALP) activity with high sensitivity and accuracy is critical for both ALP-related health and food safety supervision and the development of ALP-triggered immunoassay platforms. Herein, an ultrasensitive ratiometric fluorescence (RF) sensing system based on the controllable formation of luminescent polydopamine and efficient quenching of carbon dots was proposed for the ALP activity assay, achieving quantitative detection in the range of 0.01-100 mU/L. Furthermore, this RF sensing system was integrated with an ALP-based ELISA platform to construct an RF-ELISA for benzocaine, a potentially abused anesthetic in edible fish, and ultrasensitive assay at the level of fg/mL was realized. This ratiometric strategy-based platform effectively shields various interferences through the self-calibration effect, thus providing more accurate and reliable quantification results. This study not only offers an efficient method for ultratrace detection of ALP and benzocaine but also proposes a universal platform for ultrasensitive detection of diverse targets in food analysis by replacing the recognition unit.


Subject(s)
Carbon , Quantum Dots , Alkaline Phosphatase , Benzocaine , Fluorescence , Fluorescent Dyes , Limit of Detection
5.
J Agric Food Chem ; 71(19): 7575-7583, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37057807

ABSTRACT

Tricaine is a common anesthetic used in the long-distance transport of live fish. Recently, its negative impact on human health has aroused extensive concern. Thus, rapid and reliable techniques for tricaine residue analysis are essential to ensuring the quality of aquatic products. Herein, a specific anti-tricaine monoclonal antibody (Mab) was prepared. Then, a sensitive and robust ratiometric fluorescence ELISA (RF-ELISA) was constructed for detecting tricaine based on two MnO2 nanoflake-mediated (MnO2 NFs) fluorogenic reactions. In the RF-ELISA protocol, MnO2 NFs with oxidase-like activity can trigger the formation of fluorescent 2,3-diaminophenazine (oxOPD) with an emissive peak at 570 nm from non-fluorescent o-phenylenediamine (OPD), while ascorbic acid (AA) can decompose MnO2 NFs to lose their oxidase-mimicking activity, which is accompanied by the oxidation of AA into dehydroascorbic acid (DHAA). The subsequent reaction between the generated DHAA and OPD will result in the production of 3-(1,2-dihydroxy ethyl)furo[3,4-b]quinoxalin-1(3H)-on (DFQ), which has a potent emission peak at 445 nm. By virtue of the alkaline phosphatase (ALP) labeled on the antibody, which can catalyze the production of AA from ascorbic acid 2-phosphate (AAP), the concentration of tricaine can be linked to the variation of the RF signal (F445/F570) via a competitive immunoreaction. After optimization, RF-ELISA displayed a detection limit (LOD) of 0.28 ng/mL toward tricaine (in buffer solution), which was 376-fold lower than that of the traditional colorimetric ELISA. For practical application, the LODs of RF-ELISA for tricaine detection in shrimp and tilapia samples were determined to be 2.8 and 5.6 ng/g, respectively. Recoveries for spiked shrimp and tilapia samples, as well as the validation data from LC-MS/MS, showed that RF-ELISA exhibited good accuracy, precision, and reliability. This RF-ELISA protocol opened up new ways for tricaine and other-target analyses in food safety detection.


Subject(s)
Manganese Compounds , Oxides , Animals , Humans , Manganese Compounds/chemistry , Oxides/chemistry , Fluorescence , Reproducibility of Results , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidoreductases/chemistry , Enzyme-Linked Immunosorbent Assay , Coloring Agents , Limit of Detection
6.
Food Chem ; 396: 133729, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35872493

ABSTRACT

In this work, a specific monoclonal antibody against tyramine was produced based on a new hapten design. Then, we developed a high-resolution multicolor colorimetric immunoassay for tyramine based on this antibody by integrating enzyme-induced multicolor generation with smartphone-assistant signal readout. The multicolor generation is due to the shift of the local surface plasmon resonance band of gold nanostructure controlled by alkaline phosphatase-induced the growth of gold nanostars. Quantitative detection of tyramine was achieved via analyzing the red/blue channel values of assay solution's image taken by a smartphone with the support of a color recognizer application. The limit of detection of this immunoassay for tyramine detection in beef, pork and yoghurt was 19.7 mg/kg or L. The average recoveries were between 83 % and 103 %., and the results were validated by high performance liquid chromatography to be reliable. Overall, this developed immunoassay provides a promising platform for on-site detection of tyramine.


Subject(s)
Gold , Metal Nanoparticles , Animals , Cattle , Colorimetry/methods , Gold/chemistry , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry , Smartphone , Tyramine
7.
Food Chem ; 376: 131907, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34968915

ABSTRACT

Herein, a nanozyme-mediated ratiometric fluorescence immunoassay for histamine (HA) has been developed. Prussian blue nanoparticles (PBNPs) with outstanding peroxidase-like activity were labelled with goat anti-mouse IgG via a facile electrostatic adsorption to yield the nanozyme-antibody conjugate which acted as a bridge to link the ratiometric fluorescence readout with HA concentration. As substrate, o-phenylenediamine (OPD) was oxidized into 2,3-diaminophenazine (oxOPD) by H2O2 under the catalysis of PBNPs, producing a novel emission at 570 nm and quenching the fluorescence of carbon dots (CDs) at 450 nm simultaneously. Under optimal conditions, the ratio of fluorescence intensity at 570 nm and 450 nm (I570/I450) linearly correlated with HA concentration ranging from 1.6 ng/mL to 125 µg/mL, with a detection limit (LOD) of 1.2 ng/mL. In addition, analytical performances including specificity, accuracy and applicability were evaluated, which revealed that this ratiometric fluorescence immunoassay affords an effective platform for sensitive and accurate detection of HA.

8.
Biomolecules ; 9(10)2019 10 11.
Article in English | MEDLINE | ID: mdl-31614550

ABSTRACT

Histamine (HA) is an important food contaminant generated during food fermentation or spoilage. However, an immunoassay for direct (derivatization free) determination of HA has rarely been reported due to its small size to induce the desired antibodies by its current hapten-protein conjugates. In this work, despite violating the classical hapten design criteria which recommend introducing a linear aliphatic (phenyl free) linker into the immunizing hapten, a novel haptens, HA-245 designed and synthesized with a phenyl-contained linker, exhibited significantly enhanced immunological properties. Thus, a quality-improved monoclonal antibody (Mab) against HA was elicited by its hapten-carrier conjugates. Then, as the linear aliphatic linker contained haptens, Hapten B was used as linker-heterologous coating haptens to eliminate the recognition of linker antibodies. Indirect competitive ELISA (ic-ELISA) was developed with a 50% inhibition concentration (IC50) of 0.21 mg/L and a limit of detection (LOD) of 0.06 mg/L in buffer solution. The average recoveries of HA from spiked food samples for this ic-ELISA ranged from 84.1% and 108.5%, and the analysis results agreed well with those of referenced LC-MS/MS. This investigation not only realized derivatization-free immunoassay for HA, but also provided a valuable guidance for hapten design and development of immunoassay for small molecules.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Histamine/analysis , Animals , Antibodies, Monoclonal/immunology , Antigen-Antibody Reactions , Female , Histamine/immunology , Mice , Mice, Inbred BALB C , Models, Molecular , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...