Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Heliyon ; 10(3): e25733, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352762

ABSTRACT

Drug-resistant N. gonorrhoeae is an urgent threat to global public health, and vaccine development is the best long-term strategy for controlling gonorrhea. We have previously shown that adhesion and penetration protein (App) play a role in the adhesion, invasion, and reproductive tract colonization of N. gonorrhoeae. Here, we describe the immune response induced by intranasal immunization with passenger and translocator fragments of App. The recombinant App passenger and translocator fragments induced high titers of IgG and IgA antibodies in serum and vaginal washes. Antibodies produced by App passenger and the combination of passenger and translocator mediated the killing of N. gonorrhoeae via serum bactericidal activity and opsonophagocytic activity, whereas antisera from translocator-immunized groups had lower bactericidal activity and opsonophagocytic activity. The antisera of the App passenger and translocator, alone and in combination, inhibited the adhesion of N. gonorrhoeae to cervical epithelial cells in a concentration-dependent manner. Nasal immunization with App passenger and translocator fragments alone or in combination induced high levels of IgG1, IgG2a, and IgG2b antibodies and stimulated mouse splenocytes to secrete cytokines IFN-γ and IL-17A, suggesting that Th1 and Th17 cellular immune responses were activated. In vivo experiments have shown that immune App passenger and transporter fragments can accelerate the clearance of N. gonorrhoeae in the vagina of mice. These data suggest that the App protein is a promising N. gonorrhoeae vaccine antigen.

2.
Gut Microbes ; 14(1): 2055440, 2022.
Article in English | MEDLINE | ID: mdl-35383540

ABSTRACT

The type VI secretion system (T6SS) and hemolysin HlyA are important virulence factors in Vibrio cholerae. The forkhead-associated (FHA) domain is a conserved phosphopeptide binding domain that exists in many regulatory modules. The FHA domain protein-encoding gene is conserved in the T6SS gene cluster and regulates the assembly and secretion of the T6SS. This study shows for the first time that the FHA domain protein TagH plays a role in controlling the hemolytic activity of V. cholerae, in addition to regulating the T6SS. TagH negatively regulates HlyA expression at the transcriptional and post-translational levels. The phosphopeptide binding sites of the FHA domain of TagH play a key role in the regulation of hemolytic activity. The deletion of tagH enhances the intestinal pathogenicity and extraintestinal invasion ability of V. cholerae, which mainly depend on the expression of HlyA. This study provides evidence that helps unravel the novel regulatory role of TagH in HlyA and provides critical insights which will aid in the development of strategies to manage HlyA.


Subject(s)
Bacterial Proteins , Type VI Secretion Systems , Vibrio cholerae , Bacterial Proteins/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Vibrio cholerae/metabolism , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...