Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 174035, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885705

ABSTRACT

The association of soil organic matter (SOM) with iron (Fe) oxyhydroxides, particularly ferrihydrite, plays a pivotal role in the biogeochemical cycling of carbon (C) in both terrestrial and aquatic environment. The aging of ferrihydrite to more crystalline phases can impact the stability of associated organic C, a process potentially influenced by aluminum (Al) substitution due to its abundance. However, the molecular mechanisms governing the temporal and spatial distribution of SOM during the aging process of Al-substituted Fe oxyhydroxides remain unclear. This study aims to bridge this knowledge gap through a comprehensive approach, utilizing batch experiments, solid characterization techniques, and atomic force microscopy (AFM) based peak-force quantitative nanomechanical mapping (PF-QNM). Batch experiments revealed that humic acid (HA) was released into the aqueous phase during aging, with Al inhibiting this release. Various solid characterization methods collectively suggested that Al hindered the crystalline transformation of ferrihydrite and significantly preserved HA on the surface of newly formed hematite, rather than it being occluded within the interior of the new minerals. Results from 3-Dimensional fluorescence spectroscopy (3D-EEM) and Fourier-transform infrared spectroscopy (FTIR) indicated that the structure of HA remained constant, with the carboxyl-rich and hydroxyl-rich portions of HA fixed at the mineral interface during the aging period. Furthermore, we developed AFM-based PF-QNM to both quantify and visualize the interactions between Fe oxyhydroxides and HA, demonstrating variations in HA affinity among different Fe oxyhydroxides and highlighting the influence of the Al substitution rate.

2.
Chemosphere ; 331: 138684, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37059202

ABSTRACT

Phosphorus (P), an important macroelement for crops, may be lost into water systems by human activities and subsequently cause serious environmental problems such as eutrophication. Thus, the recovery of P from wastewater is essential. P can be adsorbed and recovered from wastewater using many natural, environmentally friendly clay minerals, however the adsorption ability is limited. Here we applied a synthesis nanosized clay mineral, laponite, to evaluate the P adsorption ability and molecular mechanisms of the adsorption process. We apply X-ray Photoelectron Spectroscopy (XPS) to observe the adsorption of inorganic phosphate onto laponite, and then measure the adsorption content of phosphate by laponite via batch experiments in different solution conditions, including pH, ionic species and concentrations. Then the molecular mechanisms of adsorption are analyzed by Transmission Electron Microscopy (TEM) and molecular modeling using Density Functional Theory (DFT). The results show that phosphate adsorbs to the surface and interlayer of laponite via hydrogen bonding, and the adsorption energies of the interlayer are greater than those of the surface. These bulk solution and molecular-scale results in a model system may provide new insights into the recovery of phosphorus by nanosized clay, with possible environmental engineering applications for P-pollution control and sustainable utilization of P sources.


Subject(s)
Phosphorus , Wastewater , Humans , Phosphorus/chemistry , Clay , Adsorption , Phosphates/chemistry , Minerals
SELECTION OF CITATIONS
SEARCH DETAIL
...