Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18379, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319671

ABSTRACT

The developmental transcriptomes of Sarcomyxa edulis were assessed to explore the molecular mechanisms underlying lignocellulose degradation. Six stages were analyzed, spanning the entire developmental process: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Samples from all six developmental stages were used for transcriptome sequencing, with three biological replicates for all experiments. A co-expression network of weighted genes associated with extracellular enzyme physiological traits was constructed using weighted gene co-expression network analysis (WGCNA). We obtained 19 gene co-expression modules significantly associated with lignocellulose degradation. In addition, 12 key genes and 8 kinds of TF families involved in lignocellulose degradation pathways were discovered from the four modules that exhibited the highest correlation with the target traits. These results provide new insights that advance our understanding of the molecular genetic mechanisms of lignocellulose degradation in S. edulis to facilitate its utilization by the edible mushroom industry.


Subject(s)
Agaricales , Transcriptome , Agaricales/genetics , Mycelium/metabolism , Gene Expression Profiling
2.
Gene ; 824: 146450, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35337848

ABSTRACT

Sarcomyxa edulis is a widely harvested mushroom of Northeastern Asia. Its development can be divided into six stages: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Differentially expressed gene (DEG) analysis and weighted gene coexpression network analysis (WGCNA) are important bioinformatic methods for screening key genes. To explore the growth and development mechanisms of the mushroom S. edulis and clarify its genetic background, DEG and WGCNA analyses were combined to screen key genes at different developmental stages. From A1 to A6, respectively, 459, 97, 885, 169, 277, and 712 key genes were identified. Then the Gene Ontology (GO) terms and KEGG pathways of key genes were analyzed, and GO and KEGG analyses were performed on all genes across different periods using GSEA. In summary, the genes in A1 were mainly involved in amino sugar and nucleotide sugar metabolism, structural molecule activity, and oxidative phosphorylation. At the A2 stage, genes were mainly involved in peptidase activity, peroxidase activity, oxidoreductase activity, antioxidant activity, biosynthesis of secondary metabolites, and glycolysis and gluconeogenesis. A3 genes were involved in gene expression, RNA metabolism, spliceosome, RNA transport, and ribosome biogenesis. A4 genes were mainly involved in the biosynthesis of secondary metabolites, proteasome complex, cellular protein complex assembly, actin filament-based processes, oxidative phosphorylation, and carbon metabolism. The A5 stage genes were involved in the carbohydrate metabolic process, polysaccharide metabolic process, and the biosynthesis of secondary metabolites, leucine, isoleucine, and ABC transporters. Finally, A6 genes were mainly involved in the cell cycle, meiosis of yeast, MAPK signaling pathway, cellular response to DNA damage stimulus, DNA metabolic process, DNA replication, and DNA repair. The combination of multiple analyses provides us with an in-depth understanding of the network that regulates mushroom development.


Subject(s)
Agaricales , Gene Expression Profiling , Agaricales/genetics , Agaricales/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling/methods , Mycelium , Transcriptome
3.
Arch Microbiol ; 200(10): 1465-1470, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30151776

ABSTRACT

A Gram-staining-positive, aerobic, rod-shaped (201802YP6T) bacteria was isolated from soil, Northeast of China. Growth occurred at 10-40 °C (optimum 25-30 °C), at pH 6.0-8.0 (optimum 7.0) and at 0-2% NaCl. Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbors of strain 201802YP6T were identified as Bhargavaea cecembensis DSE10T (99.52%), Bhargavaea beijingensis ge10T (99.45%), Bhargavaea indica KJW98T (99.45%), Bhargavaea ullalensis ZMA19T (98.81%), and Bhargavaea ginsengi ge14T (98.76%). Levels of similarity among strain 201802YP6T and other Bhargavaea species were lower than 98.76%. GyrB amino acid sequence-based analysis supported the phylogenetic position and also distinguished strain 201802YP6T from the other species of the genus Bhargavaea. DNA-DNA hybridization values between strain 201802YP6T and B. cecembensis, B. beijingensis, B. indica, B. ullalensis, B. ginsengi were 43.5%, 43%, 32.5%, 30.5% and 20.4%, respectively. The DNA G + C content of strain 201802YP6T was 51.23 mol%. The average nucleotide identity (ANI) of the draft genome was 87.04% to B. cecembensis DSE10T. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipids, phosphatidylethanolamine, and phosphatidyllipid. The predominant menaquinone was MK-8. The major fatty acids were iso-C15:0 (39.91%), anteiso-C15:0 (28.86%), anteiso-C17:0 (6.30%) and C16:0 (6.13%). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain 201802YP6T represents a novel species of the genus Bhargavaea, for which the name Bhargavaea changchunensis sp. nov. is proposed. The type strain is 201802YP6T (= CGMCC 1.13508T = KCTC 33975T).


Subject(s)
Planococcaceae/classification , Soil Microbiology , Base Composition , China , DNA, Bacterial/chemistry , Fatty Acids/analysis , Nucleic Acid Hybridization , Phylogeny , Planococcaceae/genetics , Planococcaceae/isolation & purification , RNA, Ribosomal, 16S/genetics
4.
J Microbiol ; 55(6): 435-439, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28429167

ABSTRACT

A Gram-positive, aerobic, non-motile, rod-shapeds, catalase-positive, and oxidase-negative strain, designated Y49T, was isolated from sewage collected from Jilin Agricultural University, China. It grew at 20-40°C (optimum at 30°C), at pH 6.0-8.0 (optimum at 7.0) and at 0-1.0% sodium chloride (optimum at 0%). The major isoprenoid quinone was menaquinone-8 (MK-8) and the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, four unidentified lipids, and two unidentified aminolipids. The peptidoglycan was meso-diaminopimelic acid. The cell-wall sugars were galactose, arabinose, and glucose. The fatty acids were C9:0, C16:0, C16:1 ω9c, C17:1 ω9c, C18:3 ω6c (6,9,12), C18:1 ω9c, and C18:0. The DNA G+C content was 51.4 mol%. Based on the 16S rRNA gene sequence analysis, the nearest phylogenetic neighbors of strain Y49T were Corynebacterium efficiens DSM 44549T (97.5%), Corynebacterium callunae DSM 20147T (97.2%), Corynebacterium deserti GIMN 1.010T (96.8%), Corynebacterium glutamicum ATCC 13032T (96.4%), and other species belonging to this genus (92.3-95.4%). The DNA-DNA relatedness value between strain Y49T and C. efficiens DSM 44549T, C. callunae DSM 20147T, C. deserti GIMN1.010T, and C. glutamicum ATCC 13032T was 25.5±2.0%, 21.1±1.0%, 16.5±0.5%, and 13.5±0.9%, respectively. Based on the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain Y49T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium defluvii sp nov. is proposed. The type strain is Y49T (= KCTC 39731T =CGMCC 1.15506T).


Subject(s)
Corynebacterium , Sewage/microbiology , Base Composition , China , Corynebacterium/classification , Corynebacterium/genetics , Corynebacterium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/analysis , Peptidoglycan/analysis , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...