Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Sci Total Environ ; 945: 173772, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871313

ABSTRACT

Nanoplastics (NPs) and polycyclic aromatic hydrocarbons (PAHs) are recognized as persistent organic pollutant (POPs) with demonstrated physiological toxicity. When present in aquatic environments, the two pollutants could combine with each other, resulting in cumulative toxicity to organisms. However, the combined impact of NPs and PAHs on microorganisms in seawater is not well understood. In this study, we conducted an exposure experiment to investigate the individual and synergistic effects of NPs and PAHs on the composition, biodiversity, co-occurrence networks of microbial communities in seawater. Exposure of individuals to PAHs led to a reduction in microbial community richness, but an increase in the relative abundance of species linked to PAHs degradation. These PAHs-degradation bacteria acting as keystone species, maintained a microbial network complexity similar to that of the control treatment. Exposure to individual NPs resulted in a reduction in the complexity of microbial networks. Furthermore, when PAHs and NPs were simultaneously present, the toxic effect of NPs hindered the presence of keystone species involved in PAHs degradation, subsequently limiting the degradation of PAHs by marine microorganisms, resulting in a decrease in community diversity and symbiotic network complexity. This situation potentially poses a heightened threat to the ecological stability of marine ecosystems. Our work strengthened the understanding of the combined impact of NPs and PAHs on microorganisms in seawater.

3.
Sci Total Environ ; 912: 168837, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040376

ABSTRACT

The use of alternative per- and polyfluoroalkyl substances (PFASs) has been practiced because of the restrictions on legacy PFASs. However, knowledge gaps exist on the ecological risks of alternatives and relationships between restrictions and emissions. This study systematically analyzed the occurrence characteristics, water-sediment partitioning behaviors, ecological risks, and emissions of legacy and alternative PFASs in the Bohai Bay Rim (BBR). The mean concentration of total PFASs was 46.105 ng/L in surface water and 6.125 ng/g dry weight (dw) in sediments. As an alternative for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (GenX) had a concentration second only to PFOA in surface water. In sediments, perfluorobutyric acid (PFBA) and GenX were the two predominant contaminants. In the water-sediment partitioning system, GenX, 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (F-53B), and 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (8:2 Cl-PFESA) tended to be enriched towards sediments. The species sensitivity distribution (SSD) models revealed the low ecological risks of PFASs and their alternatives in the BBR. Moreover, predicted no-effected concentrations (PNECs) indicated that short-chain alternatives like PFBA and perfluorobutane sulfonate (PFBS) were safer for aquatic ecosystems, while caution should be exercised when using GenX and F-53B. Due to the incremental replacement of PFOA by GenX, cumulative emissions of 1317.96 kg PFOA and 667.22 kg GenX were estimated during 2004-2022, in which PFOA emissions were reduced by 59.2 % due to restrictions implemented since 2016. If more stringent restrictions are implemented from 2023 to 2030, PFOA emissions will further decrease by 85.0 %, but GenX emissions will increase by an additional 21.3 %. Simultaneously, GenX concentrations in surface water are forecasted to surge by 2.02 to 2.45 times in 2023. This study deepens the understanding of PFAS alternatives and assists authorities in developing policies to administer PFAS alternatives.

4.
Poult Sci ; 102(10): 103012, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37611454

ABSTRACT

The H6N2 subtype avian influenza virus (AIV) is commonly detected in the migratory waterfowl reservoirs. Previously, H6N2 AIV was believed to be nonpathogenic to young chickens and could not infect or shed in their respiratory tract under experimental conditions. However, in present study, a highly recombinant strain of duck-derived H6N2 AIV was discovered and isolated for pathogenicity tests. The results revealed that H6N2 could induce seroconversion in chickens and high morbidity of over 86.7%, along with evident upper respiratory tract hemorrhage. Moreover, 5 substitutions were detected in the upper respiratory tract shedding reisolated virus, with a high viral load in the target organs of infected chickens. In contrast, ducks failed to exhibit any symptoms, pathological lesions, or viral shedding, while demonstrated seroconversion and high viral load in the livers. These findings indicate that H6N2 AIV could also show pathogenicity to chickens under experimental conditions, thereby effectively replicating and shedding in chickens. Therefore, the study provides further elucidations on the pathogenicity of H6N2 AIV.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza A virus , Influenza in Birds , Animals , Ducks , Chickens , Influenza A virus/genetics
5.
Chinese Journal of Hematology ; (12): 917-923, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012257

ABSTRACT

Objective: To investigate the clinical and molecular biological characteristics of patients with accelerated chronic lymphocytic leukemia (aCLL) . Methods: From January 2020 to October 2022, the data of 13 patients diagnosed with aCLL at The First Affiliated Hospital of Nanjing Medical University were retrospectively analyzed to explore the clinical and molecular biological characteristics of aCLL. Results: The median age of the patients was 54 (35-72) years. Prior to aCLL, five patients received no treatment for CLL/small lymphocytic lymphoma (SLL), while the other patients received treatment, predominantly with BTK inhibitors. The patients were diagnosed with aCLL through pathological confirmation upon disease progression. Six patients exhibited bulky disease (lesions with a maximum diameter ≥5 cm). Positron emission tomography (PET) -computed tomography (CT) images revealed metabolic heterogeneity, both between and within lesions, and the median maximum standardized uptake value (SUVmax) of the lesion with the most elevated metabolic activity was 6.96 (2.51-11.90). Patients with unmutated IGHV CLL accounted for 76.9% (10/13), and the most frequent genetic and molecular aberrations included +12 [3/7 (42.9% ) ], ATM mutation [6/12 (50% ) ], and NOTCH1 mutation [6/12 (50% ) ]. Twelve patients received subsequent treatment. The overall response rate was 91.7%, and the complete response rate was 58.3%. Five patients experienced disease progression, among which two patients developed Richter transformation. Patients with aCLL with KRAS mutation had worse progression-free survival (7.0 month vs 26.3 months, P=0.015) . Conclusion: Patients with aCLL exhibited a clinically aggressive course, often accompanied by unfavorable prognostic factors, including unmutated IGHV, +12, ATM mutation, and NOTCH1 mutation. Patients with CLL/SLL with clinical suspicion of disease progression, especially those with bulky disease and PET-CT SUVmax ≥5, should undergo biopsy at the site of highest metabolic uptake to establish a definitive pathological diagnosis.


Subject(s)
Humans , Middle Aged , Aged , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Positron Emission Tomography Computed Tomography , Retrospective Studies , Biopsy , Disease Progression
6.
Front Immunol ; 14: 1306473, 2023.
Article in English | MEDLINE | ID: mdl-38196946

ABSTRACT

Differences in the cervicovaginal microbiota are associated with spontaneous preterm birth (sPTB), a significant cause of infant morbidity and mortality. Although establishing a direct causal link between cervicovaginal microbiota and sPTB remains challenging, recent advancements in sequencing technologies have facilitated the identification of microbial markers potentially linked to sPTB. Despite variations in findings, a recurring observation suggests that sPTB is associated with a more diverse and less stable vaginal microbiota across pregnancy trimesters. It is hypothesized that sPTB risk is likely to be modified via an intricate host-microbe interactions rather than due to the presence of a single microbial taxon or broad community state. Nonetheless, lactobacilli dominance is generally associated with term outcomes and contributes to a healthy vaginal environment through the production of lactic acid/maintenance of a low pH that excludes other pathogenic microorganisms. Additionally, the innate immunity of the host and metabolic interactions between cervicovaginal microbiota, such as the production of bacteriocins and the use of proteolytic enzymes, exerts a profound influence on microbial populations, activities, and host immune responses. These interplays collectively impact pregnancy outcomes. This review aims to summarize the complexity of cervicovaginal environment and microbiota dynamics, and associations with bacterial vaginosis and sPTB. There is also consideration on how probiotics may mitigate the risk of sPTB and bacterial vaginosis.


Subject(s)
Bacteriocins , Microbiota , Premature Birth , Vaginosis, Bacterial , Infant, Newborn , Female , Infant , Pregnancy , Humans , Host Microbial Interactions
7.
Front Microbiol ; 13: 904451, 2022.
Article in English | MEDLINE | ID: mdl-35774454

ABSTRACT

The cervicovaginal environment in pregnancy is proposed to influence risk of spontaneous preterm birth. The environment is shaped both by the resident microbiota and local inflammation driven by the host response (epithelia, immune cells and mucous). The contributions of the microbiota, metabolome and host defence peptides have been investigated, but less is known about the immune cell populations and how they may respond to the vaginal environment. Here we investigated the maternal immune cell populations at the cervicovaginal interface in early to mid-pregnancy (10-24 weeks of gestation, samples from N = 46 women), we confirmed neutrophils as the predominant cell type and characterised associations between the cervical neutrophil transcriptome and the cervicovaginal metagenome (N = 9 women). In this exploratory study, the neutrophil cell proportion was affected by gestation at sampling but not by birth outcome or ethnicity. Following RNA sequencing (RNA-seq) of a subset of neutrophil enriched cells, principal component analysis of the transcriptome profiles indicated that cells from seven women clustered closely together these women had a less diverse cervicovaginal microbiota than the remaining three women. Expression of genes involved in neutrophil mediated immunity, activation, degranulation, and other immune functions correlated negatively with Gardnerella vaginalis abundance and positively with Lactobacillus iners abundance; microbes previously associated with birth outcome. The finding that neutrophils are the dominant immune cell type in the cervix during pregnancy and that the cervical neutrophil transcriptome of pregnant women may be modified in response to the microbial cervicovaginal environment, or vice versa, establishes the rationale for investigating associations between the innate immune response, cervical shortening and spontaneous preterm birth and the underlying mechanisms.

8.
Sci Adv ; 8(17): eabm3436, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35476440

ABSTRACT

Macrophages play a vital role in cardiac repair following myocardial infarction (MI). An enriched environment (EE) is involved in the regulation of macrophage-related activities and disease progression; however, whether EE affects the phenotype and function of macrophages to improve postinfarction cardiac repair remains unknown. In this study, we found that EE improved cardiac function, decreased mortality, and ameliorated adverse ventricular remodeling in mice after MI, with these outcomes closely related to the increased survival of Ly6Clow macrophages and their CCR2-MHCIIlow subsets. EE increased the expression of brain-derived neurotrophic factor (BDNF) in the hypothalamus, leading to higher circulating levels of BDNF, which, in turn, regulated the cardiac macrophages. BDNF bound to tropomyosin receptor kinase B to activate downstream ERK1/2 and AKT pathways, promoting macrophage survival. These findings demonstrate that EE optimizes postinfarction cardiac repair and highlights the significance of EE as a previously unidentified strategy for impeding adverse ventricular remodeling.


Subject(s)
Myocardial Infarction , Ventricular Remodeling , Animals , Brain-Derived Neurotrophic Factor/metabolism , Heart , Macrophages/metabolism , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Myocardium/metabolism
9.
Am J Obstet Gynecol ; 227(1): 72.e1-72.e16, 2022 07.
Article in English | MEDLINE | ID: mdl-35398029

ABSTRACT

BACKGROUND: Spontaneous preterm birth remains the main driver of childhood morbidity and mortality. Because of an incomplete understanding of the molecular pathways that result in spontaneous preterm birth, accurate predictive markers and target therapeutics remain elusive. OBJECTIVE: This study sought to determine if a cell-free RNA profile could reveal a molecular signature in maternal blood months before the onset of spontaneous preterm birth. STUDY DESIGN: Maternal samples (n=242) were obtained from a prospective cohort of individuals with a singleton pregnancy across 4 clinical sites at 12-24 weeks (nested case-control; n=46 spontaneous preterm birth <35 weeks and n=194 term controls). Plasma was processed via a next-generation sequencing pipeline for cell-free RNA using the Mirvie RNA platform. Transcripts that were differentially expressed in next-generation sequencing cases and controls were identified. Enriched pathways were identified in the Reactome database using overrepresentation analysis. RESULTS: Twenty five transcripts associated with an increased risk of spontaneous preterm birth were identified. A logistic regression model was developed using these transcripts to predict spontaneous preterm birth with an area under the curve =0.80 (95% confidence interval, 0.72-0.87) (sensitivity=0.76, specificity=0.72). The gene discovery and model were validated through leave-one-out cross-validation. A unique set of 39 genes was identified from cases of very early spontaneous preterm birth (<25 weeks, n=14 cases with time to delivery of 2.5±1.8 weeks); a logistic regression classifier on the basis of these genes yielded an area under the curve=0.76 (95% confidence interval, 0.63-0.87) in leave-one-out cross validation. Pathway analysis for the transcripts associated with spontaneous preterm birth revealed enrichment of genes related to collagen or the extracellular matrix in those who ultimately had a spontaneous preterm birth at <35 weeks. Enrichment for genes in insulin-like growth factor transport and amino acid metabolism pathways were associated with spontaneous preterm birth at <25 weeks. CONCLUSION: Second trimester cell-free RNA profiles in maternal blood provide a noninvasive window to future occurrence of spontaneous preterm birth. The systemic finding of changes in collagen and extracellular matrix pathways may serve to identify individuals at risk for premature cervical remodeling, with growth factor and metabolic pathways implicated more often in very early spontaneous preterm birth. The use of cell-free RNA profiles has the potential to accurately identify those at risk for spontaneous preterm birth by revealing the underlying pathophysiology, creating an opportunity for more targeted therapeutics and effective interventions.


Subject(s)
Cell-Free Nucleic Acids , Premature Birth , Cell-Free Nucleic Acids/genetics , Cervix Uteri , Female , Humans , Infant, Newborn , Pregnancy , Premature Birth/genetics , Prospective Studies , RNA
10.
Nature ; 601(7893): 422-427, 2022 01.
Article in English | MEDLINE | ID: mdl-34987224

ABSTRACT

Maternal morbidity and mortality continue to rise, and pre-eclampsia is a major driver of this burden1. Yet the ability to assess underlying pathophysiology before clinical presentation to enable identification of pregnancies at risk remains elusive. Here we demonstrate the ability of plasma cell-free RNA (cfRNA) to reveal patterns of normal pregnancy progression and determine the risk of developing pre-eclampsia months before clinical presentation. Our results centre on comprehensive transcriptome data from eight independent prospectively collected cohorts comprising 1,840 racially diverse pregnancies and retrospective analysis of 2,539 banked plasma samples. The pre-eclampsia data include 524 samples (72 cases and 452 non-cases) from two diverse independent cohorts collected 14.5 weeks (s.d., 4.5 weeks) before delivery. We show that cfRNA signatures from a single blood draw can track pregnancy progression at the placental, maternal and fetal levels and can robustly predict pre-eclampsia, with a sensitivity of 75% and a positive predictive value of 32.3% (s.d., 3%), which is superior to the state-of-the-art method2. cfRNA signatures of normal pregnancy progression and pre-eclampsia are independent of clinical factors, such as maternal age, body mass index and race, which cumulatively account for less than 1% of model variance. Further, the cfRNA signature for pre-eclampsia contains gene features linked to biological processes implicated in the underlying pathophysiology of pre-eclampsia.


Subject(s)
Cell-Free Nucleic Acids , Pre-Eclampsia , RNA , Cell-Free Nucleic Acids/blood , Female , Humans , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , Predictive Value of Tests , Pregnancy , RNA/blood , Retrospective Studies , Sensitivity and Specificity
11.
Sci Total Environ ; 818: 151718, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34800446

ABSTRACT

Nitrous oxide is one of the most powerful greenhouse gases and can destroy the ozone layer through photochemical reactions. In 2019, we conducted three cruises to study the spatial and temporal variability of N2O distribution and emissions in the Bohai Sea (BS) and North Yellow Sea (NYS), and analyzed the regional sources and sinks. The maximum average N2O concentrations were observed in the summer, followed by autumn, while the minimum was observed in the spring. The N2O concentration decreased in a gradient from the estuary to the continental shelf, particularly in summer, which indicated that the riverine input from the estuary was a strong source of N2O in the Bohai Sea. Due to the vertical mixing of the water column, the vertical distribution of N2O was moderate in autumn, while the bottom remained a hotspot for N2O emissions in spring and summer. The generalized additive model (GAM) showed that the temperature, salinity, DO and pH were strong predictors of N2O in the BS and NYS. Excess N2O concentrations were positively linearly correlated with the apparent oxygen utilization and NO3- concentrations, which suggested that nitrification was the dominant process of in situ N2O production in the BS and NYS. The mixing of water masses, especially DW (diluted water) and BCW (Bohai Sea coastal water), provided a significant amount of N2O to the entire shelf area of the BS. In addition, the coastal input was a dominate pusher of N2O emissions in the estuarine region. Overall, the annual N2O emissions from BS and NYS were approximately 1.72 × 10-2 Tg yr-1, which accounted for 0.51% of the annual global marine N2O emissions, but only 0.04% of the total area of the world's oceans. Hence, both the BS and NYS acted as N2O sources to the atmosphere.


Subject(s)
Environmental Monitoring , Nitrous Oxide , China , Estuaries , Nitrous Oxide/analysis , Seawater
12.
Front Microbiol ; 12: 705724, 2021.
Article in English | MEDLINE | ID: mdl-34616375

ABSTRACT

Sediment is thought to be a vital reservoir for antibiotic resistance genes (ARGs). Often, studies describing and comparing ARGs and their potential hosts in sediment are based on single DNA extractions. To date, however, no study has been conducted to assess the influence of DNA extraction efficiency on ARGs in sediment. To determine whether the abundance of ARGs is underestimated, we performed five successive extraction cycles with a widely used commercial kit in 10 sediment samples collected from the Haihe River and Bohai Bay. Our results showed that accumulated DNA yields after five extractions were 1.8-3.1 times higher than that by single DNA extractions. High-throughput sequencing showed that insufficient DNA extraction could generate PCR bias and skew community structure characterization in sediment. The relative abundances of some pathogenic bacteria, such as Enterobacteriales, Lactobacillales, and Streptomycetales, were significantly different between single and successive DNA extraction samples. In addition, real-time fluorescent quantitative PCR (qPCR) showed that ARGs, intI1, and 16S rRNA gene abundance strongly increased with increasing extraction cycles. Among the measured ARGs, sulfonamide resistance genes and multidrug resistance genes were dominant subtypes in the study region. Nevertheless, different subtypes of ARGs did not respond equally to the additional extraction cycles; some continued to have linear growth trends, and some tended to level off. Additionally, more correlations between ARGs and bacterial communities were observed in the successive DNA extraction samples than in the single DNA extraction samples. It is suggested that 3-4 additional extraction cycles are required in future studies when extracting DNA from sediment samples. Taken together, our results highlight that performing successive DNA extractions on sediment samples optimizes the extractable DNA yield and can lead to a better picture of the abundance of ARGs and their potential hosts in sediments.

13.
Arch Toxicol ; 95(7): 2551-2570, 2021 07.
Article in English | MEDLINE | ID: mdl-33977345

ABSTRACT

The Chinese mitten crab is an important economic species in the Chinese aquaculture industry due to its rich nutritional value and distinct flavor. The hepatopancreas is a popular edible part of the Chinese mitten crab, and therefore, hepatopancreatic health directly determines its quality. However, a large-scale outbreak of hepatopancreatic necrosis syndrome ("Shuibiezi" disease in Chinese), which is caused by abiotic agents correlated with cyanobacteria bloom outbreaks, adversely affects the Chinese mitten crab breeding industry. Cyanobacterial blooms that occur in high-density farming ponds can produce microcystin-LR (MC-LR), which is hepatotoxic in fish and mammals. Hepatopancreas toxicity of MC-LR (0, 25, 50 and 75 µg/kg) was investigated after 48 h of exposure. The MC-LR can cause hepatopancreatic injury by inducing hepatopancreatic structural damage, subcellular structural changes, and cell apoptosis, followed by enhanced lipid peroxidase, reactive oxygen species, and apoptosis-related enzyme (Caspase 3, 8, and 9) activities. These in turn promote gene and protein expression of apoptosis-associated proteases (Caspase 3, 7, and 8, Bcl-2, and Bax), and alter antioxidant system responses (superoxide dismutase, glutathione S-transferase, glutathione peroxidase, glutathione reductase activities, and glutathione content). The present study is the first report on MC-LR hepatotoxicity in the Chinese mitten crab and confirms hepatopancreas toxicity, providing a theoretical basis for enhancing MCs resistance and developing preventive and curative measures against hepatopancreatic disease in the Chinese mitten crab breeding industry.


Subject(s)
Hepatopancreas , Microcystins , Animals , China , Mammals , Marine Toxins , Microcystins/toxicity
15.
Anal Methods ; 12(43): 5168-5176, 2020 11 21.
Article in English | MEDLINE | ID: mdl-33073793

ABSTRACT

Biogenic dimethyl sulfide (DMS) has attracted widespread attention over several decades due to its potential role in linking ocean biology and climate. The air-to-sea exchange flux, estimated based on marine DMS concentration, offers useful information for evaluating its contribution to climate change. As such, field observation techniques with the characteristics of fast testing speed, portability and easy operation are in demand to accurately monitor the DMS in seawater. In this paper, we proposed a new strategy for the sensitive field measurement of DMS in seawater based on benzene-assisted photoionization positive ion mobility spectrometry (BAPI-PIMS) coupled with a time-resolved introduction. Benzene was employed as a dopant to improve the selectivity by keeping the other sulfur compounds from being ionized, while the two-dimensional data versus drift time and retention time were obtained via an online separating column to eliminate the adverse impact of environmental moisture. Under the optimization conditions, the LODs (S/N = 3) for two product-ion peaks (PIPs) of DMS decreased to 0.081 nmol L-1. Finally, the established method was applied to the lab and ship-board analysis of seawater from the Bohai Sea and the North Yellow Sea in the summer of 2019, and DMS in surface seawater was in the range of 0.11-23.90 nmol L-1 with an average of 9.88 ± 6.96 nmol L-1, indicating the potential for the field detection of marine DMS.

16.
Fish Shellfish Immunol ; 100: 300-308, 2020 May.
Article in English | MEDLINE | ID: mdl-32135343

ABSTRACT

Eriocheir sinensis is an important aquaculture species in China, and its yield and quality are threatened by oxidative stress caused by deteriorating water conditions. Reduced glutathione (GSH) is an endogenous antioxidant, but whether dietary GSH can increase the resistance of E. sinensis to environmental stress remains unclear. Therefore, in this study, crabs were fed with dietary GSH (0, 300, 600, 900, and 1200 mg/kg diet weight) for up to 10 weeks to determine the effects of different dietary GSH concentrations on growth, antioxidant capacity, and immunity of E. sinensis. The results showed that the weight gain rate and survival rate increased significantly as dietary GSH levels increased from 0 to 900 mg/kg, but decreased at 1200 mg/kg. Compared with the control group, the diet supplemented with 900 mg/kg GSH not only increased the concentration of GSH in the haemolymph and hepatopancreas, but also enhanced the activity of glutathione peroxidase (GSH-Px) (p < 0.05). Diets supplemented with 600 or 900 mg/kg GSH significantly increased the enzymes activities of superoxide dismutase (SOD), lysozyme (LZM), alkaline phosphatase, and acid phosphatase, and significantly decreased the content of malondialdehyde. To understand the changes in the activity of these enzymes further, the expression of related genes was detected. Diets supplemented with 600 or 900 mg/kg GSH significantly upregulated the genes expressions of cytosolic manganese SOD, mitochondrial manganese SOD, copper, zinc-SOD, GSH-Px, LZM, and prophenoloxidase activating factor, and significantly down regulated the expression of Toll-like receptor 1, Toll-like receptor 2, Dorsal, and the myeloid differentiation factor 88. However, a diet supplemented with 1200 mg/kg GSH decreased those positive indicators. Overall, our results demonstrated that an appropriate diet supplemented with 600 or 900 mg/kg GSH enhances antioxidant capacity and immunity, which will enhance the general health of E. sinensis.


Subject(s)
Animal Feed/analysis , Antioxidants/metabolism , Brachyura/growth & development , Dietary Supplements/analysis , Glutathione/administration & dosage , Oxidative Stress , Animals , Aquaculture , Brachyura/immunology , Immunity, Innate , Stress, Physiological
18.
Science ; 367(6477): 549-555, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32001651

ABSTRACT

Extinction learning allows animals to withhold voluntary actions that are no longer related to reward and so provides a major source of behavioral control. Although such learning is thought to depend on dopamine signals in the striatum, the way the circuits that mediate goal-directed control are reorganized during new learning remains unknown. Here, by mapping a dopamine-dependent transcriptional activation marker in large ensembles of spiny projection neurons (SPNs) expressing dopamine receptor type 1 (D1-SPNs) or 2 (D2-SPNs) in mice, we demonstrate an extensive and dynamic D2- to D1-SPN transmodulation across the striatum that is necessary for updating previous goal-directed learning. Our findings suggest that D2-SPNs suppress the influence of outdated D1-SPN plasticity within functionally relevant striatal territories to reshape volitional action.


Subject(s)
Corpus Striatum/physiology , Dopaminergic Neurons/physiology , Goals , Learning/physiology , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology , Animals , Corpus Striatum/drug effects , Dopamine Antagonists/pharmacology , Dopaminergic Neurons/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Nucleosomes/metabolism , Raclopride/pharmacology , Receptors, Dopamine D1/antagonists & inhibitors
19.
Fish Shellfish Immunol ; 97: 440-454, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31857224

ABSTRACT

Eriocheir sinensis (E. sinensis) is an important aquaculture species in China. However, deteriorating water environments lead to oxidative stress in these crabs, which subsequently reduces their quality and yield. Glutathione (GSH) is an endogenous antioxidant that is used to mitigate oxidative stress. However, whether dietary GSH can enhance the resistance of E. sinensis to oxidative stress remains unclear. Herein, crabs were fed dietary GSH (the basal diet was supplemented with 0, 300, 600, 900, and 1200 mg/kg diet weight of GSH) for up to 3 weeks and, then, challenged with lipopolysaccharide (LPS; 400 µg/kg body weight). After 6 h, their hepatopancreas were sampled. Diet supplementation with 600 and 900 mg/kg diet weight GSH not only increased the content of GSH in the hepatopancreas, but also enhanced the activities and mRNA expressions of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione-S-transferase (GST) (P < 0.05), compared to that in control crabs challenged with LPS alone. Diet supplementation with 600 or 900 mg/kg GSH also significantly increased the enzyme activities of GSH reductase and γ-glutamyl cysteine synthetase (γ-GCS) in LPS-treated crabs. Haematoxylin-eosin (HE) staining, electron microscopy, and flow cytometry were used to examine the structure and subcellular structure of and apoptosis in the hepatopancreas. The histopathology and sub-microstructure analysis results also showed that diet supplementation with 600 or 900 mg/kg GSH significantly alleviated damage in crabs challenged with LPS and decreased reactive oxygen species (ROS) levels and cell apoptosis ratios in the hepatopancreas, compared to the LPS-treated crabs. To further understand the effect of dietary GSH on LPS-induced apoptosis, the activities and gene or protein expressions of apoptosis-related factors were evaluated. As a result, diet supplementation with 600 or 900 mg/kg GSH significantly decreased the activities of caspases-3, -8, and -9 and inhibited the relative expression of caspase-3 and -8 but increased the expression of B-cell lymphoma-2 (bcl-2) and B-cell lymphoma-2-associated X inhibitor (bax inhibitor) in crabs challenged with LPS. This treatment further significantly downregulated the relative protein levels of caspase-3, -8, -9 and Bax and upregulated those of Bcl-2 in crabs challenged with LPS. However, treatment with 1200 mg/kg GSH caused the opposite effects. Overall, our results reveal that appropriate diets supplemented with 600 or 900 mg/kg GSH could enhance the antioxidant capacity and anti-apoptotic mechanisms in crabs after LPS injection, thereby providing a theoretical basis for the application of dietary GSH in E. sinensis.


Subject(s)
Animal Feed/analysis , Apoptosis , Brachyura/drug effects , Dietary Supplements/analysis , Glutathione/administration & dosage , Hepatopancreas/drug effects , Animals , Antioxidants/metabolism , Aquaculture/methods , Brachyura/physiology , China , Hepatopancreas/pathology , Immunity, Innate , Lipopolysaccharides/adverse effects , Oxidative Stress , Protective Agents/administration & dosage , Seafood
20.
Fish Shellfish Immunol ; 92: 637-648, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31271836

ABSTRACT

This study investigated the effects of restricted feeding on the growth performance, oxidative stress and inflammation of Megalobrama amblycephala fed high-carbohydrate (HC) diets. Fish (46.94 ±â€¯0.04 g) were randomly assigned to four groups containing the satiation of a control diet (30% carbohydrate) and three satiate levels (100% (HC1), 80% (HC2) and 60% (HC3)) of the HC diets (43% carbohydrate) for 8 weeks. Results showed that HC1 diet remarkably decreased final weight (FW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), hepatic activities of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT), the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, sirtuin-1 (SIRT1) protein expression and hepatic transcriptions of AMPKα2, SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1) and interleukin10 (IL 10) compared to the control group, whereas the opposite was true for protein efficiency ratio (PER), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), plasma glucose levels, alanine transaminase (AST) and aspartate aminotransferase (ALT) activities, hepatic contents of malondialdehyde (MDA), tumour necrosis factor α (TNF α) and interleukin 1ß (IL 1ß), ATP and AMP contents and hepatic transcriptions of kelch-like ECH associating protein 1 (Keap1), IkB kinase α (IKK α), nuclear factor kappa B (NF-κB), TNF α, IL 1ß, interleukin 6 (IL 6) and transforming growth factor ß (TGF ß). As for the HC groups, fish fed the HC2 diet obtained relatively high values of SGR, PER, NRE, ERE, hepatic activities of T-AOC, SOD and CAT, the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, SIRT1 protein expression and hepatic transcriptions of AMPKα2, Nrf2, CAT, copper/zinc superoxide dismutase (Cu/Zn-SOD), Mn-SOD, GPx1, glutathione S-transferase (GST) and interleukin10 (IL 10), while the opposite was true for hepatic content of IL 6 and transcription of IKK α. Overall, an 80% satiation improved the growth performance and alleviated the oxidative stress and inflammation of blunt snout bream fed HC diets via the activation of the AMPK-SIRT1 pathway and the up-regulation of the activities and transcriptions of Nrf2-modulated antioxidant enzymes coupled with the depression of the levels and transcriptions of the NF-κB-mediated pro-inflammatory cytokines.


Subject(s)
Caloric Restriction/veterinary , Cyprinidae/immunology , Dietary Carbohydrates/metabolism , Inflammation/drug therapy , Oxidative Stress/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animal Feed/analysis , Animals , Cyprinidae/metabolism , Diet/veterinary , Random Allocation , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...