Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(11): 7903-7909, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38449820

ABSTRACT

As terahertz (THz) and sub-THz region electromagnetic waves are becoming vital for industrial applications such as 5G wireless communication, so too are THz and sub-THz wave absorbing materials. Herein, we report the optical properties of monoclinic zirconia (m-ZrO2) nanoparticles in these frequency regions, with different crystalline sizes. The crystalline sizes of the three samples, measured by transmission electron microscopy, are 93 ± 23 nm (denoted 1), 28 ± 14 nm (denoted 2) and 2.6 ± 0.7 nm (denoted 3). X-ray diffraction and Raman spectra show that 1 and 2 have high crystallinity whereas 3 shows peak broadening due to its small crystalline size. Terahertz time-domain spectroscopy (THz-TDS) measurements of pelletised samples show that the small crystalline size sample exhibits larger absorption, e.g., the absorbance value at 300 GHz is 0.18 mm-1 (1), 0.04 mm-1 (2) and 1.11 mm-1 (3), and the related dielectric loss value (ε'') is 0.04 (1), 0.01 (2) and 0.82 (3), respectively. This is considered to be due to the proportional increase in surface water molecules for the small particle size sample due to the relative increase in surface area and under-coordinated atoms, shown by IR spectra. These results show that small crystalline size m-ZrO2 nanoparticles have potential as THz and sub-THz wave absorbing materials, which are crucial for noise reduction in THz and sub-THz wave technologies.

2.
Nat Commun ; 14(1): 8466, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151489

ABSTRACT

Solid refrigerants exhibiting a caloric effect upon applying external stimuli are receiving attention as one of the next-generation refrigeration technologies. Herein, we report a new inorganic refrigerant, rubidium cyano-bridged manganese-iron-cobalt ternary metal assembly (cyano-RbMnFeCo). Cyano-RbMnFeCo shows a reversible barocaloric effect with large reversible adiabatic temperature changes of 74 K (from 57 °C to -17 °C) at 340 MPa, and 85 K (from 88 °C to 3 °C) at 560 MPa. Such large reversible adiabatic temperature changes have yet to be reported among caloric effects in solid-solid phase transition refrigerants. The reversible refrigerant capacity is 26000 J kg-1 and the temperature window is 142 K. Additionally, cyano-RbMnFeCo shows barocaloric effects even at low pressures, e.g., reversible adiabatic temperature change is 21 K at 90 MPa. Furthermore, direct measurement of the temperature change using a thermocouple shows +44 K by applying pressure. The temperature increase and decrease upon pressure application and release are repeated over 100 cycles without any degradation of the performance. This material series also possesses a high thermal conductivity value of 20.4 W m-1 K-1. The present barocaloric material may realize a high-efficiency solid refrigerant.

3.
J Phys Chem Lett ; 14(46): 10420-10426, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37955968

ABSTRACT

The development of nanolayered materials is one of the greatest challenges in nanoscience. Until now, pseudohalogen-bridged nanosheets using the mechanical exfoliation method have not been reported. A state-of-the-art material, {[FeII(3-acetylpyridine)2][HgII(µ-SCN)4]}n (1), has been developed to achieve the goal. The compound forms a two-dimensional (2D) coordination polymer with weak out-of-plane van der Waals interactions and has an intrinsic tendency to form shear planes perpendicular to the crystallographic c-direction. These structural features predispose 1 to mechanical exfoliation realized by employing the "Scotch-tape method". As a result, nanosheets were fabricated and characterized by digital optical microscopy, scanning electron microscopy, and atomic force microscopy. The nanosheets were found to have a minimum thickness of ∼15 nm and a lateral size of several micrometers. As the first example of thiocyanato-bridged coordination nanosheets, these materials extend the scope of 2D materials and potentially pave the way toward developing nanolayered materials.

4.
Adv Mater ; 32(48): e2004897, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33029839

ABSTRACT

In the era of Big Data and the Internet of Things, data archiving is a key technology. From this viewpoint, magnetic recordings are drawing attention because they guarantee long-term data storage. To archive an enormous amount of data, further increase of the recording density is necessary. Herein a new magnetic recording methodology, "focused-millimeter-wave-assisted magnetic recording (F-MIMR)," is proposed. To test this methodology, magnetic films based on epsilon iron oxide nanoparticles are prepared and a focused-millimeter-wave generator is constructed using terahertz (THz) light. Irradiating the focused millimeter wave to epsilon iron oxide instantly switches its magnetic pole direction. The spin dynamics of F-MIMR are also calculated using the stochastic Landau-Lifshitz-Gilbert model considering all of the spins in an epsilon iron oxide nanoparticle. In F-MIMR, the heat-up effect of the recording media is expected to be suppressed. Thus, F-MIMR can be applied to high-density magnetic recordings.

5.
Sci Rep ; 9(1): 13203, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31534163

ABSTRACT

The accumulated heat energy of a heat-storage material is typically released over time. If a heat-storage material could preserve its accumulated heat energy for a prolonged period, the applicability of such materials would be expanded greatly. Herein we report a newly fabricated heat-storage material that can store latent heat energy for a long period and release the heat energy upon demand by applying an extremely low pressure. This material is a block-type lambda trititanium pentoxide (block-type λ-Ti3O5). The block-type λ-phase accumulates a large heat energy of 237 kJ L-1 and exhibits a pressure-induced phase transition to beta trititanium pentoxide. The pressure-induced phase transition occurs by applying only several tens of bars, and half of the fraction transforms by 7 MPa (70 bar). Such a low-pressure-responsive heat-storage ceramic is effective to reuse excessive heat in automobiles or waste heat at industrial factories.

SELECTION OF CITATIONS
SEARCH DETAIL
...