Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 22(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38393028

ABSTRACT

Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.


Subject(s)
Neuroblastoma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Hydrogen Peroxide/toxicity , Mitophagy , Neuroblastoma/drug therapy , Apoptosis , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Xanthophylls
2.
Water Sci Technol ; 84(8): 1873-1884, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34695016

ABSTRACT

In the present investigation, a one-step synthesis of hydrochar (HC) supported zero-valent iron (ZVI) was performed through hydrothermal carbonization (HTC) of granatum and ZVI. According to XRD, XPS, and FTIR data, ZVI was evenly distributed on the surface of the hydrochar. In addition, the external ZVI oxide layer and the functional groups present in the hydrochar remained on the surface of the HC/ZVI composites after HTC treatment. The surface area of the HC/ZVI composites was between 31.11 and 44.16 m2/g. These numbers were higher than those obtained for hydrochar (20.36 m2/g) and ZVI (12.14 m2/g) separately. The Pb2+ adsorption capacity of hydrochar and ZVI was 28.64 and 192.44 mg/g, respectively (25 °C, pH = 6.05, Pb2+ concentration of 200 mg/L with 0.05 g HC and 0.01 g ZVI). In addition, the adsorption capacity of the composites was between 49.63 and 88.09 mg/g. The data obtained for Pb2+ removal by the samples used in this experiments fitted well the pseudo-second-order kinetics and Langmuir isotherm models. Therefore, hydrochar may represent a promising supporting material for the synthesis of ZVI composites.


Subject(s)
Iron , Water Pollutants, Chemical , Adsorption , Kinetics , Lead , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...