Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37367933

ABSTRACT

As an important index to evaluate the quality of milk, milk fat content directly determines the nutrition and flavor of milk. Recently, growing evidence has suggested that long noncoding RNAs (lncRNAs) play important roles in bovine lactation, but little is known about the roles of lncRNAs in milk fat synthesis, particularly the underlying molecular processes. Therefore, the purpose of this study was to explore the regulatory mechanism of lncRNAs in milk fat synthesis. Based on our previous lncRNA-seq data and bioinformatics analysis, we found that Lnc-TRTMFS (transcripts related to milk fat synthesis) was upregulated in the lactation period compared to the dry period. In this study, we found that knockdown of Lnc-TRTMFS significantly inhibited milk fat synthesis, resulting in a smaller amount of lipid droplets and lower cellular triacylglycerol levels, and significantly decreased the expression of genes related to adipogenesis. In contrast, overexpression of Lnc-TRTMFS significantly promoted milk fat synthesis in bovine mammary epithelial cells (BMECs). In addition, Bibiserv2 analysis showed that Lnc-TRTMFS could act as a molecular sponge for miR-132x, and retinoic acid induced protein 14 (RAI14) was a potential target of miR-132x, which was further confirmed by dual-luciferase reporter assays, quantitative reverse transcription PCR, and western blots. We also found that miR-132x significantly inhibited milk fat synthesis. Finally, rescue experiments showed that Lnc-TRTMFS could weaken the inhibitory effect of miR-132x on milk fat synthesis and rescue the expression of RAI14. Taken together, these results revealed that Lnc-TRTMFS regulated milk fat synthesis in BMECs via the miR-132x/RAI14/mTOR pathway.


Milk fat is an important index to evaluate the quality of milk. The content of milk fat directly determines the quality and flavor of milk. Studies have shown that milk components can change with the expression of specific genes and noncoding RNA that regulate it in different lactation periods. In this study, after the interference and overexpression of Lnc-TRTMFS on milk fat metabolism in bovine mammany epithelial cells, we found that Lnc-TRTMFS could positively regulate milk fat synthesis in bovine mammary epithelial cells. The ceRNA network of Lnc-TRTMFS-miR-132x-RAI14 was constructed by software prediction and double fluorescein report test, and the salvage effect of Lnc-TRTMFS on milk fat synthesis was confirmed by salvage test. Most importantly, we found that Lnc-TRTMFS and miR-132x can regulate milk fat by regulating the mTOR pathway by regulating RAI14.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Female , Animals , Cattle , Milk/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tretinoin/pharmacology , RNA, Long Noncoding/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism
2.
Quant Imaging Med Surg ; 11(5): 2001-2012, 2021 May.
Article in English | MEDLINE | ID: mdl-33936981

ABSTRACT

BACKGROUND: Liver iron and fat are often co-deposited, synergistically aggravating the progression of chronic liver disease. Accurate determination of liver iron and fat content is helpful for patient management. To assess the accuracy of hepatic iron/fat decomposition using dual-energy computed tomography (DECT) for simultaneously quantifying hepatic iron and fat when both are present. METHODS: Sixty-eight New Zealand rabbits on a high-fat/cholesterol diet plus iron injections were used to establish a model of coexisting hepatic iron/fat. Abdominal imaging was performed using dual-source DECT. The iron and fat fractions (Iron-CT and Fat-CT, respectively) were calculated using a 3-material decomposition algorithm. The spectroscopic liver iron concentration (LIC) grading (normal, mild, moderate, severe, and massive iron overload) and the histopathological fat fraction (Fat-ref) grading (normal, mild, moderate, severe steatosis) were used as references. Correlations between the DECT parameters and the references were analyzed. Hepatic iron/fat quantification equations were established and validated. Analysis of covariance was used to assess the influence of fat on iron measurements and vice versa. RESULTS: Iron-CT highly correlated with LIC (r=0.94, P<0.001), and Fat-CT highly correlated with Fat-ref (r=0.88, P<0.001). Both the Iron-CT- and Fat-CT-derived LIC and fat fraction showed good agreement with spectroscopy/histology. The linear relationship between Iron-CT and spectroscopic LIC was not affected by the grade of hepatic fat (F=1.93, P=0.16). The linear relationship between Fat-CT and Fat-ref was unaffected by hepatic iron grades from normal to severe (F=0.18, P=0.91). However, with massive iron overload [>15.0 mg Fe/g (270 µmol/g)] the regression began to deviate, causing fat underestimation (F=5.50, P=0.04). CONCLUSIONS: Our DECT-based iron/fat decomposition algorithm accurately measured hepatic iron and fat when both were present in a rabbit model. Hepatic fat may be underestimated when there is massive iron overload.

3.
Ecol Evol ; 8(5): 2580-2593, 2018 03.
Article in English | MEDLINE | ID: mdl-29531678

ABSTRACT

Congeneric species often have similar ecological characteristics and use similar resources. These similarities may make it easier for them to co-occur in a similar habitat but may also lead to strong competitions that limit their coexistence. Hence, how do similarities in congeneric species affect their coexistence exactly? This study mainly used spatial point pattern analysis in two 1 hm2 plots in the Baotianman National Nature Reserve, Henan, China, to compare the similarities in spatial distributions and interspecific associations of Quercus species. Results revealed that Quercus species were all aggregated under the complete spatial randomness null model, and aggregations were weaker under the heterogeneous Poisson process null model in each plot. The interspecific associations of Quercus species to non-Quercus species were very similar in Plot 1. However, they can be either positive or negative in different plots between the co-occurring Quercus species. The spatial distributions of congeneric species, interspecific associations with non-Quercus species, neighborhood richness around species, and species diversity were all different between the two plots. We found that congeneric species did have some similarities, and the closely related congeneric species can positive or negative associate with each other in different plots. The co-occurring congeneric species may have different survival strategies in different habitats. On the one hand, competition among congenerics may lead to differentiation in resource utilization. On the other hand, their similar interspecific associations can strengthen their competitive ability and promote local exclusion to noncongeneric species to obtain more living space. Our results provide new knowledge for us to better understand the coexistence mechanisms of species.

4.
Front Plant Sci ; 8: 874, 2017.
Article in English | MEDLINE | ID: mdl-28603535

ABSTRACT

Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.

5.
Front Plant Sci ; 7: 1533, 2016.
Article in English | MEDLINE | ID: mdl-27790236

ABSTRACT

Species turnover is fundamental for understanding the mechanisms that influence large-scale species richness patterns. However, few studies have described and interpreted large-scale spatial variation in plant species turnover, and the causes of this variation remain elusive. In addition, the determinants of species turnover depend on the dispersal ability of growth forms. In this study, we explored the large-scale patterns of woody species turnover across the latitude gradient based on eight large stem-mapping plots (covering 184 ha forest) in East Asia. The patterns of woody species turnover increased significantly with increasing latitude differences in East Asia. For overall woody species, environment explained 36.30, 37.20, and 48.48% of the total variance in Jaccard's (ßj), Sorenson's, (ßs), and Simpson's dissimilarity (ßsim). Spatial factors explained 47.92, 48.39, and 41.38% of the total variance in ßj, ßs, and ßsim, respectively. The effects of pure spatial and spatially structured environments were stronger than pure environmental effects for overall woody species. Our results support the hypothesis that the effect of neutral processes on woody species turnover is more important than the effect of the environment. Neutral processes explained more variation for turnover of tree species, and environmental factors explained more variation for the turnover of shrub species on a large scale. Therefore, trees and shrubs should be subjected to different protection strategies in future biodiversity conservation efforts.

6.
Appl Biochem Biotechnol ; 168(8): 2123-35, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23054823

ABSTRACT

The seeds of winter wheat were pretreated with three different doses of low-energy N(+) beams, and its seedlings were subjected to UV-B irradiation (10.08 kJ m(-2) day(-1)) at three-leaves stage. The growth characteristic of seeds, the oxidative damage to membrane system induced by UV-B radiation, and the alleviating effects of N(+) beams pretreatment to radiation damage were investigated. The results showed that the germination rate and seedling rate, respectively, increased 14.09 ± 1.03 and 13.91 ± 1.21 % compared with control (CK) at the dose of 4.0 × 10(16) ions/cm(2). When seedlings were exposed to UV-B radiation, the pretreatment method under the dose of 4.0 × 10(16) ions/cm(2) made the activity of peroxidase and superoxide dismutase increasing, the content of chlorophyll enhancing, but the content of malondialdehyde reducing significantly compared with that of the single UV-B radiation. Whereas, the activity of catalase irradiated by UV-B improved notably under the pretreatment dose of 8.0 × 10(16) ions/cm(2). In addition, after being irradiated with UV-B, the content of soluble protein and glutathione whose seeds were pretreated by the dose of 6.0 × 10(16) ions/cm(2) were higher than that of the single UV-B radiation. It was suggested that the suitable dose of low-energy ion beams pretreatment to wheat seeds could change its physiological characteristics at seedlings stage to alleviate the damage effects from UV-B radiation.


Subject(s)
Seedlings/radiation effects , Triticum/radiation effects , Ultraviolet Rays/adverse effects , Antioxidants/metabolism , Glutathione/metabolism , Malondialdehyde/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Seedlings/enzymology , Seedlings/growth & development , Seedlings/metabolism , Sodium/chemistry , Solubility , Triticum/enzymology , Triticum/growth & development , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...