Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Plant Physiol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561990

ABSTRACT

Fruit ripening is a complex process involving dynamic changes to metabolites and is controlled by multiple factors, including transcription factors (TFs). Several TFs are reportedly essential regulators of tomato (Solanum lycopersicum) fruit ripening. To evaluate the effects of specific TFs on metabolite accumulation during fruit ripening, we combined CRISPR/Cas9-mediated mutagenesis with metabolome and transcriptome analyses to explore regulatory mechanisms. Specifically, we generated various genetically engineered tomato lines that differed regarding metabolite contents and fruit colors. The metabolite and transcript profiles indicated that the selected TFs have distinct functions that control fruit metabolite contents, especially carotenoids and sugars. Moreover, a mutation to ELONGATED HYPOCOTYL5 (HY5) increased tomato fruit fructose and glucose contents by approximately 20% (relative to the wild-type levels). Our in vitro assay showed that HY5 can bind directly to the G-box cis-element in the Sugars Will Eventually be Exported Transporter (SWEET12c) promoter to activate expression, thereby modulating sugar transport. Our findings provide insights into the mechanisms regulating tomato fruit ripening and metabolic networks, providing the theoretical basis for breeding horticultural crops that produce fruit with diverse flavors and colors.

2.
Mol Ther Nucleic Acids ; 35(2): 102163, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38545620

ABSTRACT

Anorectal malformations (ARMs) are congenital diseases that lead to postoperative fecal incontinence, constipation, and soiling, despite improvements in surgery; however, their pathological mechanisms remain unclear. Here, we report the role of microRNA-141-3p in maintaining homeostasis between apoptosis and autophagy in the lumbosacral defecation center of fetal rats with ARMs. Elevated microRNA-141-3p expression inhibited YIN-YANG-1 expression by binding its 3' UTR, and repressed autophagy and triggered apoptosis simultaneously. Then, adenylate cyclase 3 was screened to be the downstream target gene of YIN-YANG-1 by chromatin immunoprecipitation sequencing experiments, and Yin Yang 1 could positively activate the transcription of adenylate cyclase 3 by directly interacting with the motif GAGATGG and ATGG in its promoter. Intraamniotic microinjection of adeno-rno-microRNA-141-3p-sponge-GFP in fetal rats with ARMs on embryonic day 15 restored apoptosis-autophagy homeostasis. These findings reveal that microRNA-141-3p upregulation impaired homeostasis between apoptosis and autophagy by inhibiting the YIN-YANG-1/adenylate cyclase 3 axis, and that intraamniotic injection of anti-microRNA-141-3p helped maintain homeostasis in the lumbosacral defecation center of ARMs during embryogenesis.

3.
Biomed Pharmacother ; 173: 116171, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394844

ABSTRACT

The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.


Subject(s)
Neoplasms , Pregnancy , Animals , Female , Methylation , Embryonic Development/genetics
4.
Food Chem X ; 21: 101093, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38268841

ABSTRACT

Yellow tea is a lightly fermented tea with unique sensory qualities and health benefits. However, chemical composition and sensory quality of yellow tea products have rarely been studied. 12 representative yellow teas, which were basically covered the main products of yellow tea, were chosen in this study. Combined analysis of non-targeted/targeted metabolomics and electronic sensor technologies (E-eye, E-nose, E-tongue) revealed the chemical and sensor variation. The results showed that yellow big tea differed greatly from yellow bud teas and yellow little teas, but yellow bud teas could not be effectively distinguished from yellow little teas based on chemical constituents and electronic sensory characteristics. Sensor variation of yellow teas might be attributed to some compounds related to bitterness and aftertaste-bitterness (4'-dehydroxylated gallocatechin-3-O-gallate, dehydrotheasinensin C, myricitin 3-O-galactoside, phloroglucinol), aftertaste-astringency (methyl gallate, 1,5-digalloylglucose, 2,6-digalloylglucose), and sweetness (maltotriose). This study provided a comprehensive understanding of yellow tea on chemical composition and sensory quality.

5.
RSC Adv ; 14(1): 382-389, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38188979

ABSTRACT

Prior research has established choline-based ionic liquids (ILs) as safe for various organisms. However, their impact on plants has been underexplored. To identify effective eco-friendly ILs, we synthesized seven choline amino acid ([Chl][AA]) ILs and analyzed their physiological influence on maize seed germination. In contrast to the traditionally used N-octyl pyridinium bromide IL, these seven [Chl][AA] ILs exhibited substantially lower toxicity. Moreover, within a broad treatment concentration range (10-100 mg L-1), these ILs notably enhanced maize germination indices and root and shoot growth. Specifically, treatment with 100 mg L-1 choline tryptophan resulted in a 21.2% increase in germination index compared to those of control maize. Compared to the control, the application of choline serine, choline aspartic acid, choline phenylalanine, and choline tryptophan at 100 mg L-1 led to respective increases of 23.9%, 21.5%, 22.5%, and 24.5% in maize shoot length. Analysis of endogenous hormones and free amino acid contents revealed elevated levels of growth-promoting plant hormones (gibberellic acid and zeatin) in maize shoot tips, as well as increased contents of major amino acids (glutamate, glycine, and arginine) following treatment with different [Chl][AA] ILs at 100 mg L-1. These findings indicate that [Chl][AA] holds promise for the development and application of novel low-toxicity ILs.

6.
Pediatr Res ; 95(5): 1246-1253, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135728

ABSTRACT

The mechanism underlying anorectal malformations (ARMs)-related VACTERL (vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, and renal and limb abnormalities) remains unclear. Copy number variation (CNV) contributed to VACTERL pathogenicity. Here, we report a novel CNV in 8p23 and 12q23.1 identified in a case of ARMs-related VACTERL association. This 12-year-old girl presented a cloaca (urethra, vagina, and rectum opening together and sharing a single tube length), an isolated kidney, and a perpetuation of the left superior vena cava at birth. Her intelligence, growth, and development were slightly lower than those of normal children of the same age. Array comparative genomic hybridization revealed a 9.6-Mb deletion in 8p23.1-23.3 and a 0.52-Mb duplication in 12q23.1 in her genome. Furthermore, we reviewed the cases involving CNVs in patients with VACTERL, 8p23 deletion, and 12q23.1 duplication, and our case was the first displaying ARMs-related VACTERL association with CNV in 8p23 and 12q23.1. These findings enriched our understanding between VACTERL association and the mutations of 8p23 deletion and 12q23.1 duplication. IMPACT: This is a novel case of a Chinese girl with anorectal malformations (ARMs)-related VACTERL with an 8p23.1-23.3 deletion and 12q23.1 duplication. Cloaca malformation is presented with novel copy number variation in 8p23.1-23.3 deletion and 12q23.1 duplication.


Subject(s)
Anal Canal/abnormalities , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 8 , DNA Copy Number Variations , Esophagus/abnormalities , Genetic Association Studies , Heart Defects, Congenital , Kidney/abnormalities , Limb Deformities, Congenital , Spine/abnormalities , Trachea/abnormalities , Humans , Female , Limb Deformities, Congenital/genetics , Child , Heart Defects, Congenital/genetics , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 12/genetics , Mutation , Comparative Genomic Hybridization , Cloaca/abnormalities , Phenotype , Abnormalities, Multiple/genetics
7.
ACS Nano ; 17(22): 22527-22538, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37933888

ABSTRACT

Idiopathic pulmonary fibrosis is a chronic and highly lethal lung disease that largely results from oxidative stress; however, effective antioxidant therapy by targeting oxidative stress pathogenesis is still lacking. The big challenge is to develop an ideal antioxidant material with superior antifibrotic effects. Herein, we report that V4C3 nanosheets (NSs) can serve as a potential antioxidant for treatment of pulmonary fibrosis by scavenging reactive oxygen and nitrogen species. Interestingly, subtle autoxidation can adjust the valence composition of V4C3 NSs and significantly improve their antioxidant behavior. Valence engineering triggers multiple antioxidant mechanisms including electron transfer, H atom transfer, and enzyme-like catalysis, thus endowing V4C3 NSs with broad-spectrum, high-efficiency, and persistent antioxidant capacity. Benefiting from antioxidant properties and good biocompatibility, V4C3 NSs can significantly prevent myofibroblast proliferation and extracellular matrix abnormality, thus alleviating the progression of bleomycin-induced pulmonary fibrosis in vivo by scavenging ROS, anti-inflammation, and rebuilding antioxidant defenses. This study not only provides an important strategy for designing excellent antioxidant nanomaterials, but also proposes a proof-of-concept demonstration for the treatment of pulmonary fibrosis and other oxidative stress-related diseases.


Subject(s)
Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Lung/metabolism , Vanadium , Oxidative Stress , Organic Chemicals , Reactive Oxygen Species/pharmacology
8.
Nanoscale Adv ; 5(21): 5799-5809, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881712

ABSTRACT

MXenes, two-dimensional nanomaterials, are gaining traction in catalysis and biomedicine. Yet, their oxidation instability poses significant functional constraints. Gaining insight into this oxidation dynamic is pivotal for designing MXenes with tailored functionalities. Herein, we crafted VOxC nanosheets by oxidatively engineering V4C3 MXene. Interestingly, while pristine V4C3 displays pronounced antioxidant behavior, its derived VOxC showcases enhanced peroxidase-like activity, suggesting the crossover between antioxidant and pro-oxidant capability. The mixed valence states and balanced composition of V in VOxC drive the Fenton reaction through multiple pathways to continually generate hydroxyl radicals, which was proposed as the mechanism underlying the peroxidase-like activity. Furthermore, this unique activity rendered VOxC effective in dopamine and glutathione detection. These findings underscore the potential of modulating MXenes' oxidation state to elicit varied catalytic attributes, providing an avenue for the judicious design of MXenes and derivatives for bespoke applications.

9.
Front Cell Infect Microbiol ; 13: 1173505, 2023.
Article in English | MEDLINE | ID: mdl-37465759

ABSTRACT

The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.


Subject(s)
Host Microbial Interactions , Inflammasomes , Virus Diseases , Viruses , Humans , Inflammasomes/immunology , Virus Diseases/immunology , Virus Diseases/therapy , Viruses/immunology , Host Microbial Interactions/immunology , Animals
10.
Front Chem ; 11: 1132587, 2023.
Article in English | MEDLINE | ID: mdl-36909705

ABSTRACT

A {(3,4),4}-fullerene graph G is a 4-regular plane graph with exactly eight triangular faces and other quadrangular faces. An edge subset S of G is called an anti-Kekulé set, if G - S is a connected subgraph without perfect matchings. The anti-Kekulé number of G is the smallest cardinality of anti-Kekulé sets and is denoted by a k G . In this paper, we show that 4 ≤ a k G ≤ 5 ; at the same time, we determine that the {(3, 4), 4}-fullerene graph with anti-Kekulé number 4 consists of two kinds of graphs: one of which is the graph H 1 consisting of the tubular graph Q n n ≥ 0 , where Q n is composed of n n ≥ 0 concentric layers of quadrangles, capped on each end by a cap formed by four triangles which share a common vertex (see Figure 2 for the graph Q n ); and the other is the graph H 2 , which contains four diamonds D 1, D 2, D 3, and D 4, where each diamond D i 1 ≤ i ≤ 4 consists of two adjacent triangles with a common edge e i 1 ≤ i ≤ 4 such that four edges e 1, e 2, e 3, and e 4 form a matching (see Figure 7D for the four diamonds D 1 - D 4). As a consequence, we prove that if G ∈ H 1 , then a k G = 4 ; moreover, if G ∈ H 2 , we give the condition to judge that the anti-Kekulé number of graph G is 4 or 5.

11.
J Exp Bot ; 74(3): 1059-1073, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36383488

ABSTRACT

Small signalling peptides play important roles in various plant processes, but information regarding their involvement in plant immunity is limited. We previously identified a novel small secreted protein in rice, called immune response peptide 1 (IRP1). Here, we studied the function of IRP1 in rice immunity. Rice plants overexpressing IRP1 enhanced resistance to the virulent rice blast fungus. Application of synthetic IRP1 to rice suspension cells triggered the expression of IRP1 itself and the defence gene phenylalanine ammonia-lyase 1 (PAL1). RNA-seq results revealed that 84% of genes up-regulated by IRP1, including 13 OsWRKY transcription factors, were also induced by a microbe-associated molecular pattern (MAMP), chitin, indicating that IRP1 and chitin share a similar signalling pathway. Co-treatment with chitin and IRP1 elevated the expression level of PAL1 and OsWRKYs in an additive manner. The increased chitin concentration arrested the induction of IRP1 and PAL1 expression by IRP1, but did not affect IRP1-triggered mitogen-activated protein kinases (MAPKs) activation. Collectively, our findings indicate that IRP1 functions as a phytocytokine in rice immunity regulating MAPKs and OsWRKYs that can amplify chitin and other signalling pathways, and provide new insights into how MAMPs and phytocytokines cooperatively regulate rice immunity.


Subject(s)
Oryza , Plant Proteins , Plant Proteins/metabolism , Plant Immunity/physiology , Signal Transduction/genetics , Mitogen-Activated Protein Kinases/metabolism , Peptides/metabolism , Chitin/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant
12.
Biomed Pharmacother ; 153: 113513, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076600

ABSTRACT

Since the discovery of the nuclear factor kappa B (NF-ĸB) transcription factor 36 years ago, many studies have linked the NF-ĸB signaling pathway to pathological and physiological processes, such as inflammation, immune response, and tumorigenesis. However, as the NF-ĸB signaling pathway is evolutionarily conserved from flies to humans, an increasing number of studies have focused on the impact of NF-ĸB signaling on developmental processes. While our understanding of the mechanisms underlying NF-ĸB signaling involved in tissue and organ development is limited, the numerous studies conducted in recent years have provided preliminary insights into these molecular mechanisms. In this review, we summarize the latest information on the molecular mechanisms behind NF-ĸB signaling involved in tissue and organ development, highlighting the role and significance of the NF-ĸB signaling pathway in developmental processes. This review elucidates the fact that the development of nearly all tissues is associated with NF-ĸB signaling, either directly or indirectly.


Subject(s)
NF-kappa B , Signal Transduction , Gene Expression Regulation , Humans , Inflammation , Morphogenesis/genetics , NF-kappa B/metabolism , Organogenesis/genetics , Signal Transduction/physiology , Transcription Factor RelA/metabolism
13.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142128

ABSTRACT

Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.


Subject(s)
Actinidia , Lignans , Actinidia/genetics , Actinidia/metabolism , Arabinose , Ascorbic Acid/metabolism , Chromatography, Liquid , Citric Acid/metabolism , Coumarins/metabolism , Fruit/genetics , Fruit/metabolism , Galactose/metabolism , Glucose/metabolism , Humans , Hydroxybenzoates , Lignans/metabolism , Melibiose/metabolism , Metabolomics , Oxaloacetates/metabolism , Phosphates/metabolism , Plant Breeding , Polyphenols/metabolism , Quinic Acid/metabolism , Starch/metabolism , Succinates/metabolism , Sucrose/metabolism , Tandem Mass Spectrometry , Tannins/metabolism , Transcriptome , Trehalose/metabolism
14.
Front Mol Biosci ; 9: 962321, 2022.
Article in English | MEDLINE | ID: mdl-36120550

ABSTRACT

Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.

15.
Dalton Trans ; 51(31): 11693-11702, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35851631

ABSTRACT

Nanozymes show great promise in bioanalysis and therapeutics, which largely rely on high catalytic efficiency and selectivity. Inspired by the interfacial electronic interaction between noble metals and transition metal carbides, Pt nanozymes are modified with Ti3C2 MXene nanosheets to construct Ti3C2/Pt hybrids with synergistically enhanced catalytic activity. Although Ti3C2 does not have oxidase and peroxidase-like activity, it can greatly selectively enhance the peroxidase-like activity of Pt nanozymes. Near-infrared irradiation can further increase specifically the peroxidase-like activity of Ti3C2/Pt. The optimal peroxidase-like activity of Ti3C2/Pt is 6 times higher than Pt in the dark and 7.9 times higher than Pt under illumination. This catalytic enhancement is attributed to the interplay of the strong interfacial electron effect and unique photothermal effect of Ti3C2. Using the superior peroxidase-like activity of Ti3C2/Pt, dual mechanism colorimetric methods based on cascade reaction and inhibitory effect are developed for specific detection of glucose and glutathione with a limit of detection of 1.0 µM and 0.0089 µM, respectively. Our work provides an effective means to improve the catalytic activity and selectivity of nanozymes by introduction of an ideal supporter, which will be of value for the design of efficient nanozymes.


Subject(s)
Colorimetry , Titanium , Catalysis , Colorimetry/methods , Glucose/analysis , Peroxidases
16.
J Pediatr Surg ; 57(12): 974-985, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35725663

ABSTRACT

BACKGROUND: Despite improvements in anorectal malformation (ARM) therapy, patients might still experience post-operative problems such as fecal incontinence, constipation, and soiling. In particular, the dysplasia of the lumbosacral spinal cord in ARM patients is a major disorder that affects fecal function post-operation. However, the pathological mechanisms involved are still unclear. METHODS: The non-coding RNAs (ncRNAs) in the lumbosacral spinal cord of fetal rats with ethylenethiourea-induced ARM were identified using RNA sequencing (RNA-seq) and examined to determine their potential function. The lumbosacral spinal cord was isolated on embryonic day 17 for subsequent RNA extraction and RNA-seq. The transcriptome data was analyzed using bioinformatics analysis, followed by validation using quantitative reverse transcription PCR. RESULTS: Compared to the control group, 26 differentially expressed microRNAs (DEMs; 22 upregulated, 4 downregulated) and 112 differentially expressed long non-coding RNAs (63 upregulated, 49 downregulated) were identified in the ARM group. Several DEMs related to development, namely miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-200a-5p, and miR-429, were selected for further analysis. Notably, compared to the control, the relative expression of miR-200 family members was highly upregulated in ARM fetal rats. Furthermore, GO and KEGG enrichment and miRNA-transcription factor-lncRNA/mRNA network analysis was explored to show molecular mechanism underlying DEMs. CONCLUSIONS: Our findings suggest the involvement of ncRNAs, especially the miR-200 family members, in the pathogenesis of lumbosacral spinal cord dysplasia in ARM fetal rats.


Subject(s)
Anorectal Malformations , MicroRNAs , RNA, Long Noncoding , Rats , Animals , Anorectal Malformations/genetics , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Fetus/metabolism
17.
Front Cell Infect Microbiol ; 12: 869832, 2022.
Article in English | MEDLINE | ID: mdl-35646741

ABSTRACT

As of April 1, 2022, over 468 million COVID-19 cases and over 6 million deaths have been confirmed globally. Unlike the common coronavirus, SARS-CoV-2 has highly contagious and attracted a high level of concern worldwide. Through the analysis of SARS-CoV-2 structural, non-structural, and accessory proteins, we can gain a deeper understanding of structure-function relationships, viral infection mechanisms, and viable strategies for antiviral therapy. Angiotensin-converting enzyme 2 (ACE2) is the first widely acknowledged SARS-CoV-2 receptor, but researches have shown that there are additional co-receptors that can facilitate the entry of SARS-CoV-2 to infect humans. We have performed an in-depth review of published papers, searching for co-receptors or other auxiliary membrane proteins that enhance viral infection, and analyzing pertinent pathogenic mechanisms. The genome, and especially the spike gene, undergoes mutations at an abnormally high frequency during virus replication and/or when it is transmitted from one individual to another. We summarized the main mutant strains currently circulating global, and elaborated the structural feature for increased infectivity and immune evasion of variants. Meanwhile, the principal purpose of the review is to update information on the COVID-19 outbreak. Many countries have novel findings on the early stage of the epidemic, and accruing evidence has rewritten the timeline of the outbreak, triggering new thinking about the origin and spread of COVID-19. It is anticipated that this can provide further insights for future research and global epidemic prevention and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Virus Replication
18.
Front Public Health ; 10: 876105, 2022.
Article in English | MEDLINE | ID: mdl-35669753

ABSTRACT

Background: The diabetic foot is a global threat to public health because it can result in infection and amputation, as well as cause the patient to experience considerable pain and incur financial costs. The condition of patients with diabetic foot in North China is distinguished by more severe local ulcers, a worse prognosis, and a longer duration of disease than that of patients with diabetic foot in the south. Through appropriate preventive measures, the diabetic foot can be effectively avoided. This study assesses the existing knowledge, attitudes and practices associated with diabetic foot prevention among adults with diabetes living in rural areas of North China. Method: This cross-sectional survey included 1,080 rural adults from North China, cluster sampled 12 villages and surveyed diabetic patients without diabetic foot who participated in community diabetes management. The self-administered knowledge and attitude questionnaire and the Chinese version of the Nottingham Assessment of Functional Foot-care Questionnaire were used. Result: Of the 1,080 subjects, 51.6% received moderate knowledge scores, 63.9% had a positive attitude and 71.4% received poor practice scores. In terms of knowledge, parameters of knowledge about foot examinations and treatment of foot problems showed the lowest scores. In terms of practice, in line with the results of the low knowledge score, parameters of the pursuit of medical treatment for foot problems and routine foot examinations were associated with the lowest scores. Multiple regression analysis revealed that participants who were current smokers (ß: -0.049, 95% CI: -0.088 to -0.011) had lower knowledge scores than those who never smoke; participants who were current smokers (ß: -0.818, 95% CI: -1.067 to -0.569) and past smokers (ß: -0.299, 95% CI: -0.485 to -0.112) had lower attitude scores than those who had never smoked; participants who had higher knowledge scores (ß: 1.964, 95% CI: 1.572-2.356) achieved higher scores on attitudes; women had better practice scores than men (ß: 0.180, 95% CI: 0.122-0.239); patients with a long diabetes duration (6-10 years) had better practice scores than those who had a short diabetes duration (<2 years; ß: 0.072, 95% CI: 0.012-0.131). Knowledge (ß: 0.130, 95% CI: 0.001-0.258) and attitudes (ß: 0.268, 95% CI: 0.249-0.287) were significantly associated with good practices. Conclusions: Increasing knowledge regarding diabetic foot would help instill positive attitudes and cultivate better practices toward diabetic foot prevention. The results of this study may help guide future promotional resources to those groups most in need, which may help lower the incidence of diabetic foot among adults in North China.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Adult , Cross-Sectional Studies , Diabetic Foot/complications , Diabetic Foot/epidemiology , Diabetic Foot/prevention & control , Female , Health Knowledge, Attitudes, Practice , Humans , Incidence , Male , Surveys and Questionnaires
19.
Plants (Basel) ; 11(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35448781

ABSTRACT

Alkali stress, a type of abiotic stress, severely inhibits plant growth. Only a few studies have investigated the mechanism underlying the transcriptional-level response of Morella cerifera to saline-alkali stress. Based on RNA-seq technology, gene expression differences in the fibrous roots of M. cerifera seedlings exposed to low- and high-concentration alkali stress (LAS and HAS, respectively) were investigated, and the corresponding 1312 and 1532 alkali stress-responsive genes were identified, respectively. According to gene set enrichment analysis, 65 gene sets were significantly enriched. Of these, 24 gene sets were shared by both treatment groups. LAS and HAS treatment groups exhibited 9 (all downregulated) and 32 (23 downregulated) unique gene sets, respectively. The differential gene sets mainly included those involved in trehalose biosynthesis and metabolism, phospholipid translocation, and lignin catabolism. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that M. cerifera seedlings were specifically enriched in stilbenoid, diarylheptanoid, and gingerol biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; and sesquiterpenoid and triterpenoid biosynthesis. Moreover, the related genes involved in hormone signaling pathways and transcription factors were determined through a localization analysis of core abiotic stress pathways. These genes and their molecular mechanisms will be the focus of future research.

20.
Biosens Bioelectron ; 209: 114224, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35395586

ABSTRACT

Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage generated by the semiconductors to modulate the channel conductance, which enables light-fueled operation at zero gate bias. Inspired by the insulating nature of macrobiomolecules and surface capacitance mechanism, herein we demonstrate the biological regulation of the surface capacitance towards new OPECT biodetection, which was exemplified by a CdS quantum dots/TiO2 nanotubes photoanode accommodating hybridization chain reaction (HCR) amplification with the target of biomarker miRNA-17. Formation of the non-conducting DNA layer from the miRNA-17-oriented HCR could decrease the surface capacitance and increase the corresponding fractional potential drop, shifting the transfer curve horizontally to higher gate voltage and thus producing different drain currents. The OPECT biosensor exhibited a linear relationship with the miRNA-17 concentration on the logarithmic axis in the range from 1 pm. to 10 µm with a detection limit of 1 pm. This work not only represented a generic methodology of miRNA detection, but also provided a universal mechanism for the operation of advanced OPECT bioanalytics.


Subject(s)
Biosensing Techniques , MicroRNAs , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , MicroRNAs/genetics , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...