Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.526
Filter
1.
Int Heart J ; 65(3): 498-505, 2024.
Article in English | MEDLINE | ID: mdl-38825494

ABSTRACT

This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.


Subject(s)
Interleukin-10 , Leukocytes, Mononuclear , MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , MicroRNAs/blood , MicroRNAs/genetics , Interleukin-10/blood , Interleukin-10/metabolism , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , Aged , Inflammation/genetics , Inflammation/blood , Inflammation/metabolism , Case-Control Studies
2.
Front Microbiol ; 15: 1325047, 2024.
Article in English | MEDLINE | ID: mdl-38690367

ABSTRACT

Background: It has been suggested in several observational studies that migraines are associated with the gut microbiota. It remains unclear, however, how the gut microbiota and migraines are causally related. Methods: We performed a bidirectional two-sample mendelian randomization study. Genome-wide association study (GWAS) summary statistics for the gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiota Project (n = 7,738). Pooled GWAS data for plasma metabolites were obtained from four different human metabolomics studies. GWAS summary data for migraine (cases = 48,975; controls = 450,381) were sourced from the International Headache Genetics Consortium. We used inverse-variance weighting as the primary analysis. Multiple sensitivity analyses were performed to ensure the robustness of the estimated results. We also conducted reverse mendelian randomization when a causal relationship between exposure and migraine was found. Results: LachnospiraceaeUCG001 (OR = 1.12, 95% CI: 1.05-1.20) was a risk factor for migraine. Blautia (OR = 0.93, 95% CI: 0.88-0.99), Eubacterium (nodatum group; OR = 0.94, 95% CI: 0.90-0.98), and Bacteroides fragilis (OR = 0.97, 95% CI: 0.94-1.00) may have a suggestive association with a lower migraine risk. Functional pathways of methionine synthesis (OR = 0.89, 95% CI: 0.83-0.95) associated with microbiota abundance and plasma hydrocinnamate (OR = 0.85, 95% CI: 0.73-1.00), which are downstream metabolites of Blautia and Bacteroides fragilis, respectively, may also be associated with lower migraine risk. No causal association between migraine and the gut microbiota or metabolites was found in reverse mendelian randomization analysis. Both significant horizontal pleiotropy and significant heterogeneity were not clearly identified. Conclusion: This Mendelian randomization analysis showed that LachnospiraceaeUCG001 was associated with an increased risk of migraine, while some bacteria in the gut microbiota may reduce migraine risk. These findings provide a reference for a deeper comprehension of the role of the gut-brain axis in migraine as well as possible targets for treatment interventions.

3.
Chem Sci ; 15(17): 6583-6588, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699248

ABSTRACT

The adsorptive separation of ternary propyne (C3H4)/propylene (C3H6)/propane (C3H8) mixtures is of significant importance due to its energy efficiency. However, achieving this process using an adsorbent has not yet been accomplished. To tackle such a challenge, herein, we present a novel approach of fine-regulation of the gradient of gate-opening in soft nanoporous crystals. Through node substitution, an exclusive gate-opening to C3H4 (17.1 kPa) in NTU-65-FeZr has been tailored into a sequential response of C3H4 (1.6 kPa), C3H6 (19.4 kPa), and finally C3H8 (57.2 kPa) in NTU-65-CoTi, of which the gradient framework changes have been validated by in situ powder X-ray diffractions and modeling calculations. Such a significant breakthrough enables NTU-65-CoTi to sieve the ternary mixtures of C3H4/C3H6/C3H8 under ambient conditions, particularly, highly pure C3H8 (99.9%) and C3H6 (99.5%) can be obtained from the vacuum PSA scheme. In addition, the fully reversible structural change ensures no loss in performance during the cycling dynamic separations. Moving forward, regulating gradient gate-opening can be conveniently extended to other families of soft nanoporous crystals, making it a powerful tool to optimize these materials for more complex applications.

4.
Brain Behav ; 14(5): e3504, 2024 May.
Article in English | MEDLINE | ID: mdl-38698583

ABSTRACT

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Subject(s)
Electroacupuncture , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Electroacupuncture/methods , Male , Rats , Reperfusion Injury/physiopathology , Reperfusion Injury/therapy , Reperfusion Injury/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/physiopathology
5.
Pathobiology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718783

ABSTRACT

Lymph node metastasis is one of the most common ways of tumour metastasis. The presence or absence of lymph node involvement influences the cancer's stage, therapy, and prognosis. The integration of artificial intelligence systems in the histopathological diagnosis of lymph nodes after surgery is urgent. Here, we propose a pan-origin lymph node cancer metastasis detection system. The system is trained by over 700 whole slide images and is composed of two deep learning models to locate the lymph nodes and detect cancers. It achieved a area under the receiver operating characteristic (ROC) curve (AUC) of 0.958, with a 95.2% sensitivity and 72.2% specificity, on 1,402 whole-slide images (WSIs) from 49 organs at the National Cancer Center, China. Moreover, we demonstrated that the system could perform robustly with 1,051 WSIs from 52 organs from another medical center, with a AUC of 0.925. Our research represents a step forward in a pan-origin lymph node metastasis detection system, providing accurate pathological guidance by reducing the probability of missed diagnosis in routine clinical practice.

6.
Reprod Domest Anim ; 59(5): e14596, 2024 May.
Article in English | MEDLINE | ID: mdl-38757656

ABSTRACT

Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 µM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.


Subject(s)
Chlorogenic Acid , Embryo Culture Techniques , Embryonic Development , Mitochondria , Oxidative Stress , Parthenogenesis , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Parthenogenesis/drug effects , Mitochondria/drug effects , Embryo Culture Techniques/veterinary , Chlorogenic Acid/pharmacology , Embryonic Development/drug effects , Reactive Oxygen Species/metabolism , Blastocyst/drug effects , Swine , Membrane Potential, Mitochondrial/drug effects , Antioxidants/pharmacology , Female , Glutathione/metabolism
7.
Front Sports Act Living ; 6: 1393988, 2024.
Article in English | MEDLINE | ID: mdl-38756186

ABSTRACT

Background: Long-term skill learning can lead to structure and function changes in the brain. Different sports can trigger neuroplasticity in distinct brain regions. Volleyball, as one of the most popular team sports, heavily relies on individual abilities such as perception and prediction for high-level athletes to excel. However, the specific brain mechanisms that contribute to the superior performance of volleyball athletes compared to non-athletes remain unclear. Method: We conducted a study involving the recruitment of ten female volleyball athletes and ten regular female college students, forming the athlete and novice groups, respectively. Comprehensive behavioral assessments, including Functional Movement Screen and audio-visual reaction time tests, were administered to both groups. Additionally, resting-state magnetic resonance imaging (MRI) data were acquired for both groups. Subsequently, we conducted in-depth analyses, focusing on the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the brain for both the athlete and novice groups. Results: No significant differences were observed in the behavioral data between the two groups. However, the athlete group exhibited noteworthy enhancements in both the ALFF and ReHo within the visual cortex compared to the novice group. Moreover, the functional connectivity between the visual cortex and key brain regions, including the left primary sensory cortex, left supplementary motor cortex, right insula, left superior temporal gyrus, and left inferior parietal lobule, was notably stronger in the athlete group than in the novice group. Conclusion: This study has unveiled the remarkable impact of volleyball athletes on various brain functions related to vision, movement, and cognition. It indicates that volleyball, as a team-based competitive activity, fosters the advancement of visual, cognitive, and motor skills. These findings lend additional support to the early cultivation of sports talents and the comprehensive development of adolescents. Furthermore, they offer fresh perspectives on preventing and treating movement-related disorders. Trial registration: Registration number: ChiCTR2400079602. Date of Registration: January 8, 2024.

8.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745265

ABSTRACT

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Subject(s)
Cell Proliferation , Disease Progression , Interferon Regulatory Factors , Methyltransferases , Up-Regulation , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/genetics , Mice , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism
10.
Curr Res Food Sci ; 8: 100761, 2024.
Article in English | MEDLINE | ID: mdl-38774267

ABSTRACT

Nata de coco, an edible bacterial cellulose (BC) product, is a traditional dessert fermented in coconut water. Production of Nata de coco by Komagataeibacter nataicola is enhanced by pre-fermented coconut water, but its instability is a challenge. Here, BC production by K. nataicola Y19 was significantly improved by Saccharomyces cerevisiae 84-3 through shaping the metabolite profile of the coconut water. Different fermentation time with S. cerevisiae 84-3 resulted in distinct metabolite profiles and different promoting effect on BC yield. Compared to unfermented coconut water, coconut water fermented by S. cerevisiae 84-3 for 1d and 7d enhanced BC yield by 14.1-fold and 5.63-fold, respectively. Analysis between unfermented coconut water and 1d-fermented coconut water showed 129 significantly different metabolites, including organic acids, amino acids, nucleotides, and their derivatives. Prolonged fermentation for 7d changed levels of 155 metabolites belongs to organic acids, amino acids, nucleotides and their derivatives. Spearman correlation analysis further revealed that 17 metabolites were positively correlated with BC yield and 21 metabolites were negatively correlated with BC yield. These metabolites may affect energy metabolism, cell signaling, membrane integrity, and BC production by K. nataicola Y19. The further verification experiment gave the view that BC yield was not only closely related to the types of metabolites but also the concentration of metabolites. This study provides a novel theoretical framework for a highly efficient BC fermentation system utilizing stable fermented coconut water mediums.

11.
Front Microbiol ; 15: 1383953, 2024.
Article in English | MEDLINE | ID: mdl-38774506

ABSTRACT

The rapid emergence of invasive infections caused by azole-resistant Candida tropicalis has become a public health concern, and there is an urgent need for alternative treatment strategies. Studies have demonstrated the antibacterial effects of nisin, a well-known peptide naturally produced by Lactococcus lactis subsp. lactis. However, there is scant information about the antifungal effect of nisin against C. tropicalis. The present study aims to investigate the in vitro antifungal activity of nisin against clinical isolates of azole-resistant C. tropicalis strains, as well as its inhibitory effect on biofilm formation. A total of 35 C. tropicalis strains isolated from patients with invasive fungal infections were divided into the azole-resistant group and the azole-sensitive group, containing 21 and 14 strains, respectively. The relative expression levels of the ERG11 and UPC2 genes in the azole-resistant group were higher than those in the azole-sensitive group (p < 0.0001), while no significant differences were observed in the expression levels of the MDR1 and CDR1 genes. The minimum inhibitory concentration of nisin against C. tropicalis ranged from 2 to 8 µg/mL. Nisin treatment inhibited the growth of azole-resistant C. tropicalis, with over a four-fold reduction in OD600 nm values observed at the 8-h time point, while it promoted the transition of C. tropicalis from the spore phase to the hyphal phase, as observed on cryo-scanning electron microscopy. The results of biofilm quantification using crystal violet staining indicated a significant decrease in OD570 nm values in the nisin-treated group compared to the controls (p < 0.0001). Among the 21 azole-resistant C. tropicalis strains, the biofilm formation was inhibited in 17 strains (17/21, 81%), and more than 85% inhibition of biofilm formation was observed in the representative strains. With regard to the molecular mechanisms, the expression of the BCR1 and UPC2 genes in the azole-resistant strains was down-regulated on nisin treatment (p < 0.05). In conclusion, we demonstrated, for the first time, that nisin has antifungal activity and significant anti-biofilm activity against clinical isolates of azole-resistant C. tropicalis strains. Based on the findings, nisin could be a promising alternative antifungal agent for combating azole-resistant C. tropicalis infections.

12.
Anal Bioanal Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772972

ABSTRACT

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) represent trace lipids with significant natural biological functions. While exogenous FAHFAs have been extensively studied, research on FAHFAs in milk remains limited, constraining our grasp of their nutritional roles. This study introduces a non-targeted mass spectrometry approach combined with chemical networking of spectral fragmentation patterns to uncover FAHFAs. Through meticulous sample handling and comparisons of various data acquisition and processing modes, we validate the method's superiority, identifying twice as many FAHFAs compared to alternative techniques. This validated method was then applied to different milk samples, revealing 45 chemical signals associated with known and potential FAHFAs, alongside findings of 66 ceramide/hexosylceramide (Cer/HexCer), 48 phosphatidyl ethanolamine/lyso phosphatidyl ethanolamine (PE/LPE), 21 phosphatidylcholine/lysophosphatidylcholine (PC/LPC), 16 phosphatidylinositol (PI), 7 phosphatidylserine (PS), and 11 sphingomyelin (SM) compounds. This study expands our understanding of the FAHFA family in milk and provides a fast and convenient method for identifying FAHFAs.

13.
Zhen Ci Yan Jiu ; 49(5): 526-533, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764125

ABSTRACT

Lumbar intervertebral disc herniation (LDH) is a common and frequently-occurring disease, which usually causes lumbar and leg pain. Studies have shown that acupuncture can improve the symptoms of LDH patients. In the present paper, we summarize the progress of researches on the mechanisms of acupuncture underlying improvement of symptoms of LDH in recent 10 years from 1) delaying the intervertibral disc degeneration (by down-regulating the expressions of matrix metalloproteinase ï¼»MMPï¼½-3 and MMP-4, up-regulating the expressions of diosaccharides and polyglycoprotein, inhibiting apoptosis and promoting mitochondrial autophagy of nucleus pulposus cells, etc.), 2) maintaining spinal column stability (by relieving rachiasmus and improving lumbar flexor and extensor muscle strength, lowering the degree of polyfidus edema and fat infiltration, and restoring the biomechanics of the spine), 3) regulating inflammation (by inhibiting the production of proinflammatory factors and increasing the production of anti-inflammatory factors, etc.), 4) regulating immune response (by promoting the activity of T cells and other immune cells, lowering serum levels of MMP-3, transforming growth factor-ß1 and prostaglandin E2, raising serum levels of IgA, IgG and IgM to improve immune function ), 5) modulating neural structure and function (by promoting myelin regeneration of sciatic nerve fibers, and reducing the edema of Schwann cells' cytoplasm and mitochondria, and improving neural ultrastructure, and sensory and motor functions of peripheral nerves, etc.), 6) relieving lumbar pain (by down-regulating expression of Ca2+/calmodulin-dependent protein kinase and activation of lumbar spinal cord glial cells, blocking nociceptive signal conduction, regulating the levels of pain-related factors, etc.), and 7) improving local microcirculation. These results may provide scientific evidence for acupuncture treatment of LDH.


Subject(s)
Acupuncture Therapy , Intervertebral Disc Displacement , Humans , Intervertebral Disc Displacement/therapy , Animals , Lumbar Vertebrae
14.
Cell Prolif ; : e13657, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764128

ABSTRACT

Cortical bone loss is intricately associated with ageing and coincides with iron accumulation. The precise role of ferroptosis, characterized by iron overload and lipid peroxidation, in senescent osteocytes remains elusive. We found that ferroptosis was a crucial mode of osteocyte death in cortical bone during ageing. Using a single-cell transcriptome analysis, we identified activating transcription factor 3 (ATF3) as a critical driver of osteocyte ferroptosis. Elevated ATF3 expression in senescent osteocytes promotes iron uptake by upregulating transferrin receptor 1 while simultaneously inhibiting solute carrier family 7-member 11-mediated cystine import. This process leads to an iron overload and lipid peroxidation, culminating in ferroptosis. Importantly, ATF3 inhibition in aged mice effectively alleviated ferroptosis in the cortical bone and mitigated cortical bone mass loss. Taken together, our findings establish a pivotal role of ferroptosis in cortical bone loss in older adults, providing promising prevention and treatment strategies for osteoporosis and fractures.

15.
J Neuroeng Rehabil ; 21(1): 91, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812014

ABSTRACT

BACKGROUND: The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN: A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS: Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS: A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION: In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION: The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).


Subject(s)
Brain-Computer Interfaces , Imagery, Psychotherapy , Magnetic Resonance Imaging , Stroke Rehabilitation , Stroke , Upper Extremity , Humans , Male , Stroke Rehabilitation/methods , Female , Middle Aged , Upper Extremity/physiopathology , Imagery, Psychotherapy/methods , Stroke/physiopathology , Stroke/complications , Aged , Adult , Imagination/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
16.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713053

ABSTRACT

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Subject(s)
Cellular Senescence , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Gene Deletion , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/metabolism , Mitochondria/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics
17.
Food Chem ; 453: 139581, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754354

ABSTRACT

This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and ß-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Dioscorea/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Ultrasonic Waves
18.
Int J Neurosci ; : 1-5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38706371

ABSTRACT

OBJECTIVE: This study aimed to investigate the correlation and influencing factors between neurophysiological examinations, serum uric acid (SUA), and glucose metabolism in patients with Diabetic Peripheral Neuropathy (DPN). METHODS: A total of 114 patients with DPN who received treatment at the Endocrinology Department of our hospital from January 2022 to December 2023 were included. According to the median blood uric acid level, the patients were divided into high SUA group and low SUA group, and the demographic data, blood glucose indexes and motor nerve electrophysiological examination results of the two groups were compared. RESULTS: The level of FPG and HbA1c was higher in the high SUA group. The motor nerve latency of the high SUA group was higher, the motor nerve amplitude and motor nerve conduction velocity of the high SUA group were lower than those of the low SUA group. SUA was positively correlated with motor nerve latency and negatively correlated with motor nerve amplitude and conduction velocity. CONCLUSION: In DPN, high SUA levels are associated with poor glycemic control. With the increase in SUA levels, the motor nerve latency in patients with T2DM is prolonged, and amplitude and conduction velocity decrease, and high SUA is a risk factor and potential predictor of DPN.

19.
J Environ Manage ; 360: 121152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759550

ABSTRACT

Life cycle assessment (LCA) plays a crucial role in green manufacturing to uncover the critical aspects for alleviating the environmental burdens due to manufacturing processes. However, the scarcity of life cycle inventory (LCI) data for the manufacturing processes is a considerable challenge. This paper proposes a novel approach to extrapolate LCI data of manufacturing processes. Taking advantage of LCI data in the Ecoinvent datasets, decision tree-based supervised machine learning models, namely decision tree, random forest, gradient boosting, and adaptive boosting, have been developed to extrapolate the data of GHG emissions, i.e., carbon dioxide, nitrous oxide, methane, and water vapor. Initially, a correlation analysis was conducted to derive the most influential factors on GHG quantities resulting from manufacturing activities. First, the collected data have been preprocessed and split into train and test sets (70% and 30%, respectively). Second, a five-fold cross-validation method was applied to tune the hyperparameters of the models. Then, the models were re-trained using the best hyperparameters and evaluated using the test set. The results reveal that the Gradient Boosting model has a superior predictive performance for extrapolating the GHG emission data, with average coefficients of determination (R2) on the test set <0.95. Moreover, the model predictions involve relatively low values of the average root mean squared error and an average mean percentage of error on the test set. The correlation and feature importance analyses emphasized that the workpiece material and manufacturing technology have a considerable effect on natural resource consumption, i.e., energy, material, and water inflows into the process. Meanwhile, energy consumption, water usage, and raw aluminum depletion were the most influential factors in GHG emissions. Eventually, a case study to extrapolate the inflows and the outflows for new manufacturing activities has been conducted using the validated models. The proposed GraBoost model provides a computational supplementary approach to estimate and extrapolate the GHG emissions for different manufacturing processes when LCI data are incomplete or don't exist within LCI databases.


Subject(s)
Decision Trees , Carbon Dioxide/analysis , Machine Learning , Models, Theoretical
20.
Cancer Res Commun ; 4(5): 1351-1362, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38695555

ABSTRACT

Mucosal melanoma exhibits limited responsiveness to anti-PD-1 therapy. However, a subgroup of mucosal melanomas, particularly those situated at specific anatomic sites like primary malignant melanoma of the esophagus (PMME), display remarkable sensitivity to anti-PD-1 treatment. The underlying mechanisms driving this superior response and the DNA methylation patterns in mucosal melanoma have not been thoroughly investigated. We collected tumor samples from 50 patients with mucosal melanoma, including 31 PMME and 19 non-esophageal mucosal melanoma (NEMM). Targeted bisulfite sequencing was conducted to characterize the DNA methylation landscape of mucosal melanoma and explore the epigenetic profiling differences between PMME and NEMM. Bulk RNA sequencing and multiplex immunofluorescence staining were performed to confirm the impact of methylation on gene expression and immune microenvironment. Our analysis revealed distinct epigenetic signatures that distinguish mucosal melanomas of different origins. Notably, PMME exhibited distinct epigenetic profiling characterized by a global hypermethylation alteration compared with NEMM. The prognostic model based on the methylation scores of a 7-DMR panel could effectively predict the overall survival of patients with PMME and potentially serve as a prognostic factor. PMME displayed a substantial enrichment of immune-activating cells in contrast to NEMM. Furthermore, we observed hypermethylation of the TERT promoter in PMME, which correlated with heightened CD8+ T-cell infiltration, and patients with hypermethylated TERT were likely to have improved responses to immunotherapy. Our results indicated that PMME shows a distinct methylation landscape compared with NEMM, and the epigenetic status of TERT might be used to estimate prognosis and direct anti-PD-1 treatment for mucosal melanoma. SIGNIFICANCE: This study investigated the intricate epigenetic factor of mucosal melanomas contributed to the differential immune checkpoint inhibitor response, and found that PMME exhibited a global hypermethylation pattern and lower gene expression in comparison to NEMM. TERT hypermethylation may contribute to the favorable responses observed in patients with mucosal melanoma undergoing immunotherapy.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Melanoma , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Epigenesis, Genetic/genetics , DNA Methylation/genetics , Male , Female , Aged , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Mucous Membrane/immunology , Mucous Membrane/pathology , Middle Aged , Gene Expression Regulation, Neoplastic , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Telomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...