Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1409677, 2024.
Article in English | MEDLINE | ID: mdl-38846572

ABSTRACT

Mycoviruses have been found in various fungal species across different taxonomic groups, while no viruses have been reported yet in the fungus Exserohilum rostratum. In this study, a novel orfanplasmovirus, namely Exserohilum rostratum orfanplasmovirus 1 (ErOrfV1), was identified in the Exserohilum rostratum strain JZ1 from maize leaf. The complete genome of ErOrfV1 consists of two positive single-stranded RNA segments, encoding an RNA-dependent RNA polymerase and a hypothetical protein with unknown function, respectively. Phylogenetic analysis revealed that ErOrfV1 clusters with other orfanplasmoviruses, forming a distinct phyletic clade. A new family, Orfanplasmoviridae, is proposed to encompass this newly discovered ErOrfV1 and its associated orfanplasmoviruses. ErOrfV1 exhibits effective vertical transmission through conidia, as evidenced by its 100% presence in over 200 single conidium isolates. Moreover, it can be horizontally transmitted to Exserohilum turcicum. Additionally, the infection of ErOrfV1 is cryptic in E. turcicum because there were no significant differences in mycelial growth rate and colony morphology between ErOrfV1-infected and ErOrfV1-free strains. This study represents the inaugural report of a mycovirus in E. rostratum, as well as the first documentation of the biological and transmission characteristics of orfanplasmovirus. These discoveries significantly contribute to our understanding of orfanplasmovirus.

2.
Trends Microbiol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719702

ABSTRACT

The intimate relationships between plants and fungi provide an opportunity for the shuttling of viruses. Dai et al. recently discovered that a virus undergoes cross-kingdom transmission, and naturally spreads to both plant and fungal populations. This finding expands our understanding of viral host range, evolution, transmission, and disease management.

3.
Plant Dis ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568791

ABSTRACT

Chrysanthemum (Chrysanthemum morifolium cv. Fubaiju) is used as medicinal herb (Chen et al. 2020). In October 2021, a leaf spot disease was observed on leaves of C. morifolium in Huanggang, Hubei province. Disease incidence was approximately 40%. Leaf lesions manifested as necrotic spots, coalesced, and expanded to form brown-black spots, leading to wilting of the leaves. On stems, the lesions manifested as dark brown necrotic spots. To identify the pathogen, 29 pieces (5 × 5 mm) from lesion margins were surface sterilized in 1% NaOCl and rinsed three times with sterile water. The pieces were transferred onto potato dextrose agar (PDA) for incubation at 25℃ for 3 d in the dark. Fifteen fungal colonies were successfully isolated. The colony morphology with flat wavy edge, sparse aerial mycelia, and surface olivaceous black were observed at 7 days post incubation. Subglobular pycnidia were brown with a short beak, and pycnidia diameters were thick (212 to 265 × 189 to 363 µm, n = 20). Ovoid conidia were aseptate and hyaline, conidia diameters were thick (4.0 to 9.8 × 1.8 to 4.7 µm, n = 100). The morphological characters of these isolates were consistent with those of Stagonosporopsis chrysanthemi (Zhao et al. 2021). Pure culture of representative HGNU2021-18 isolated from the diseased leaves subjected to molecular identification. Sequences of the rDNA internal transcribed spacer (ITS) region, 28S large subunit ribosomal RNA (LSU), ß-tubulin (TUB2), actin (ACT), and partial RNA polymerase II largest subunit (RPB2) genes were amplified from genomic DNA of isolate HGNU2021-18 using the following primer pairs: ITS1/ITS4 (White et al. 1990), LR0R/LR5 (Rehner et al. 1994), Btub2Fd/Btub4Rd (Woudenberg et al. 2009), ACT512F/ACT783R (Carbone et al.1999), and RPB2-5F2 (Sung et al. 2007)/fRPB2-7cR (Liu et al. 1999), respectively. The PCR products were purified and then sequenced by Sangon Biotech (China). Nucleotide sequences of ITS (544 bp, OM346748), LSU (905 bp, OM758418), TUB2 (563 bp, OM945724), ACT (294 bp, OM793715), and RPB2 (957 bp, OM793716) amplified from the isolate HGNU2021-18 were subjected to BLASTn analysis. The results showed that ITS, LSU, TUB2, ACT, and RPB2 shared 100.00%, 99.45%, 99.20%, 100.00%, and 100.00% sequence identity to the five published sequences (MW810272.1, MH869953.1, MW815129.1, JN251973.1, and MT018012.1, respectively) of the S. chrysanthemi isolate CBS 500.63. Phylogenetic analysis of the multilocus sequences of ITS, LSU, RPB2, ACT, and TUB2 belonging to different Stagonosporopsis species was performed in MEGA 7.0 (Chen et al. 2015). Isolate HGNU2021-18 was placed in a clade with S. chrysanthemi with 99% bootstrap support. Thus, the results of morphological and molecular analyses indicated that the disease symptoms on chrysanthemum plants were caused by S. chrysanthemi. Under conditions of 25°C and 85% relative humidity, pathogenicity test was performed on 2-month-old healthy plants using isolate HGNU2021-18. The leaves were inoculated with 5 mm diameter mycelial plugs or with sterile agar plugs (control). Six plants were used in each treatment. Disease symptoms were observed on treated plants at 2 weeks post inoculation which were those previously observed in the field, while the control plants remained symptomless. The pathogen was re-isolated from the diseased plants, and S. chrysanthemi was confirmed as the causal pathogen. This is the first report of S. chrysanthemi causing stem and foliage blight of chrysanthemum in China.

4.
Arch Virol ; 168(8): 199, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37400663

ABSTRACT

In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Setosphaeria turcica strain TG2, and the virus was named "Setosphaeria turcica ambiguivirus 2" (StAV2). The complete nucleotide sequence of the StAV2 genome was determined using RT-PCR and RLM-RACE. The StAV2 genome comprises 3,000 nucleotides with a G+C content of 57.77%. StAV2 contains two in-frame open reading frames (ORFs) with the potential to produce an ORF1-ORF2 fusion protein via a stop codon readthrough mechanism. ORF1 encodes a hypothetical protein (HP) of unknown function. The ORF2-encoded protein shows a high degree of sequence similarity to the RNA-dependent RNA polymerases (RdRps) of ambiguiviruses. BLASTp searches showed that the StAV2 HP and RdRp share the highest amino acid sequence identity (46.38% and 69.23%, respectively) with the corresponding proteins of a virus identified as "Riboviria sp." isolated from a soil sample. Multiple sequence alignments and phylogenetic analysis based on the amino acid sequences of the RdRp revealed that StAV2 is a new member of the proposed family "Ambiguiviridae".


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , RNA, Viral/genetics , RNA, Viral/chemistry , Phylogeny , Ascomycota/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Genome, Viral , Fungal Viruses/genetics
5.
Arch Virol ; 167(11): 2387-2390, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35927384

ABSTRACT

A new positive-sense single-stranded RNA (+ssRNA) mycovirus, Verticillium dahliae magoulivirus 1 (VdMoV1), was isolated from two strains (2-19 and XLZ70) of Verticillium dahliae. The complete genome of VdMoV1 is 2303 nucleotides (nt) in length and has a large open reading frame (nt positions from 61 to 1938) encoding an RNA-dependent RNA polymerase (RdRp). A multiple sequence alignment indicated that the central region of the RdRp encoded by VdMoV1 contains eight typical viral RdRp motifs. BLASTp analysis demonstrated that VdMoV1 has the highest sequence identity (86.88%) to Bremia lactucae associated ourmia-like virus 2 (BlaOLV2). Phylogenetic analysis revealed that VdMoV1 is a new member of the genus Magoulivirus. As far as we know, VdMoV1 is the first reported member of the family Botourmiaviridae infecting V. dahliae.


Subject(s)
Positive-Strand RNA Viruses , Verticillium , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Verticillium/virology , Positive-Strand RNA Viruses/isolation & purification
6.
J Virol ; 96(9): e0029622, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446143

ABSTRACT

RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Ascomycota/virology , Capsid Proteins/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/metabolism , Genome, Viral/genetics , Open Reading Frames , Phylogeny , RNA Viruses/chemistry , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Virus Replication/physiology
7.
J Virol ; 96(8): e0001222, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35389267

ABSTRACT

Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.


Subject(s)
Fungal Viruses , Rhabdoviridae , Animals , Fungal Viruses/genetics , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA, Viral/genetics , Rhabdoviridae/genetics , Rhizoctonia/genetics
8.
Virol Sin ; 37(3): 427-436, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35314402

ABSTRACT

A significant number of mycoviruses have been identified that are related to plant viruses, but their evolutionary relationships are largely unexplored. A fusarivirus, Rhizoctonia solani fusarivirus 4 (RsFV4), was identified in phytopathogenic fungus Rhizoctonia solani (R. solani) strain XY74 co-infected by an alphaendornavirus. RsFV4 had a genome of 10,833 â€‹nt (excluding the poly-A tail), and consisted of four non-overlapping open reading frames (ORFs). ORF1 encodes an 825 aa protein containing a conserved helicase domain (Hel1). ORF3 encodes 1550 aa protein with two conserved domains, namely an RNA-dependent RNA polymerase (RdRp) and another helicase (Hel2). The ORF2 and ORF4 likely encode two hypothetical proteins (520 and 542 aa) with unknown functions. The phylogenetic analysis based on Hel2 and RdRp suggest that RsFV4 was positioned within the fusarivirus group, but formed an independent branch with three previously reported fusariviruses of R. solani. Notably, the Hel1 and its relatives were phylogenetically closer to helicases of potyviruses and hypoviruses than fusariviruses, suggesting fusarivirus Hel1 formed an evolutionary link between these three virus groups. This finding provides evidence of the occurrence of a horizontal gene transfer or recombination event between mycoviruses and plant viruses or between mycoviruses. Our findings are likely to enhance the understanding of virus evolution and diversity.


Subject(s)
Fungal Viruses , RNA Viruses , Fungal Viruses/genetics , Genome, Viral , Open Reading Frames , Phylogeny , Plants , RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Rhizoctonia/genetics
9.
Viruses ; 14(3)2022 02 23.
Article in English | MEDLINE | ID: mdl-35336865

ABSTRACT

Endornaviruses are capsidless linear (+) ssRNA viruses in the family Endornaviridae. In this study, Scelrotinia sclerotiorum endornavirus 11 (SsEV11), a novel endornavirus infecting hypovirulent Sclerotinia sclerotiorum strain XY79, was identified and cloned using virome sequencing analysis and rapid amplification of cDNA ends (RACE) techniques. The full-length genome of SsEV11 is 11906 nt in length with a large ORF, which encodes a large polyprotein of 3928 amino acid residues, containing a viral methyltransferase domain, a cysteine-rich region, a putative DEADc, a viral helicase domain, and an RNA-dependent RNA polymerase (RdRp) 2 domain. The 5' and 3' untranslated regions (UTR) are 31 nt and 90 nt, respectively. According to the BLAST result of the nucleotide sequence, SsEV11 shows the highest identity (45%) with Sclerotinia minor endornavirus 1 (SmEV1). Phylogenetic analysis based on amino acid sequence of RdRp demonstrated that SsEV11 clusters to endornavirus and has a close relationship with Betaendornavirus. Phylogenetic analysis based on the sequence of endornaviral RdRp domain indicated that there were three large clusters in the phylogenetic tree. Combining the results of alignment analysis, Cluster I at least has five subclusters including typical members of Alphaendornavirus and many unclassified endornaviruses that isolated from fungi, oomycetes, algae, and insects; Cluster II also has five subclusters including typical members of Betaendornavirus, SsEV11, and other unclassified viruses that infected fungi; Cluster III includes many endorna-like viruses that infect nematodes, mites, and insects. Viruses in Cluster I and Cluster II are close to each other and relatively distant to those in Cluster III. Our study characterized a novel betaendornavirus, SsEV11, infected fungal pathogen S. sclerotiorum, and suggested that notable phylogenetic diverse exists in endornaviruses. In addition, at least, one novel genus, Gammaendornavirus, should be established to accommodate those endorna-like viruses in Cluster III.


Subject(s)
Fungal Viruses , RNA Viruses , Viruses , Ascomycota , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Sequence Analysis, DNA , Viruses/genetics
10.
Arch Virol ; 167(2): 603-606, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34855005

ABSTRACT

Sclerotinia sclerotiorum reovirus 1 (SsReV1) was previously reported to infect hypovirulent strain SCH941 of the phytopathogenic fungus Sclerotinia sclerotiorum and to contain 11 double-stranded RNA (dsRNA) segments (S1-S11). Here, we report that SsReV1 is actually composed of 12 dsRNA segments instead of 11. The full-length nucleotide sequence of the twelfth segment (S12) was determined using a combination of RACE and high-throughput sequencing methods. S12 is 1217 nucleotides in length and has highly conserved terminal sequences that resemble those of the other 11 segments of SsReV1. S12 contains a single open reading frame encoding a protein (VP12) of 311 amino acids. Although regular BLAST analysis did not reveal any similarity of VP12 to known sequences, it was found to be homologous to the VP11 of Colorado tick fever virus of the genus Coltivirus when a hidden-Markov-model-based HHpred analysis was performed. A single-protoplast regeneration experiment suggested that S12 and S2 were maintained or lost in parallel. In summary, the SsReV1 genome consists of 12 dsRNA segments.


Subject(s)
Ascomycota , Orthoreovirus, Mammalian , Reoviridae , Ascomycota/genetics , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Reoviridae/genetics
11.
PLoS Pathog ; 17(8): e1009823, 2021 08.
Article in English | MEDLINE | ID: mdl-34428260

ABSTRACT

Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation.


Subject(s)
Ascomycota/virology , Biological Evolution , Brassica napus/virology , Cell Lineage , Fungal Viruses/classification , Plant Diseases/virology , Plant Leaves/virology , Fungal Viruses/genetics , Fungal Viruses/growth & development , Genome, Viral , Phylogeny , RNA, Viral
12.
Arch Virol ; 166(10): 2859-2863, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34291341

ABSTRACT

Sclerotinia sclerotiorum ourmiavirus 17 (SsOV17) was isolated from the hypovirulent strain GF3 of Sclerotinia sclerotiorum. The genome of SsOV17 is 2,802 nt in length and contains a single long open reading frame (ORF) flanked by a short structured 5'-untranslated region (5'-UTR) (28 nt) and a long 3'-UTR (788 nt), respectively. The ORF encodes a protein with 663 amino acids and a predicted molecular mass of 75.0 kDa. A BLASTp search indicated that the protein encoded by SsOV17 is closely related to the putative RNA-dependent RNA polymerase (RdRp) of Sclerotinia sclerotiorum ourmiavirus 13 (71% identity). A multiple sequence alignment indicated that eight conserved amino acid motifs were present in the RdRp conserved region of SsOV17. Phylogenetic analysis demonstrated that SsOV17 clustered with members of the genus Botoulivirus.


Subject(s)
Ascomycota/virology , Fungal Viruses/classification , Plant Diseases/microbiology , RNA Viruses/classification , Amino Acid Motifs , Ascomycota/pathogenicity , Brassica napus/microbiology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Untranslated Regions/genetics
13.
Virus Evol ; 7(1): veab032, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33927888

ABSTRACT

Mycovirus diversity is generally analyzed from isolates of fungal culture isolates at a single point in time as a snapshot. The stability of mycovirus composition within the same geographical location over time remains unclear. Not knowing how the population fluctuates in the field can be a source of unpredictability in the successful application of virocontrol. To better understand the changes over time, we monitored the interannual dynamics and abundance of mycoviruses infecting Sclerotinia sclerotiorum at a rapeseed-growing field for three years. We found that the virome in S. sclerotiorum harbors unique mycovirus compositions each year. In total, sixty-eight mycoviruses were identified, among which twenty-four were detected in all three successive years. These twenty-four mycoviruses can be classified as the members of the core virome in this S. sclerotiorum population, which show persistence and relatively high transmissibility under field conditions. Nearly two-thirds of the mycoviruses have positive-sense, single-stranded RNA genomes and were found consistently across all three years. Moreover, twenty-eight mycoviruses are newly described, including four novel, multi-segmented narnaviruses, and four unique bunyaviruses. Overall, the newly discovered mycoviruses in this study belong to as many as twenty families, into which eight were first identified in S. sclerotiorum, demonstrating evolutionarily diverse viromes. Our findings not only shed light on the annual variation of mycovirus diversity but also provide important virus evolutionary clues.

14.
Viruses ; 12(12)2020 12 03.
Article in English | MEDLINE | ID: mdl-33287110

ABSTRACT

Via virome sequencing, six viruses were detected from Magnaporthe oryzae strains YC81-2, including one virus in the family Tombusviridae, one virus in the family Narnaviridae and four viruses in the family Botourmiaviridae. Since the RNA-dependent RNA polymerase (RdRp) of one botourmiavirus show the highest identity (79%) with Magnaporthe oryzae ourmia-like virus 1 (MOLV1), the virus that was grouped into the genus Magoulivirus was designated as Magnaporthe oryzae botourmiavirus 2 (MOBV2). The three other novel botourmiaviruses were selected for further study. The complete nucleotide sequences of the three botourmiaviruses were determined. Sequence analysis showed that virus 1, virus 2, and virus 3 were 2598, 2385, and 2326 nts in length, respectively. The variable 3' untranslated region (3'-UTR) and 5'-UTR of each virus could be folded into a stable stem-loop secondary structure. Each virus consisted of a unique ORF encoding a putative RdRp. The putative proteins with a conserved GDD motif of RdRp showed the highest sequence similarity to RdRps of viruses in the family Botourmiaviridae. Phylogenetic analysis demonstrated that these viruses were three distinct novel botourmiaviruses, clustered into the Botourmiaviridae family but not belonging to any known genera of this family. Thus, virus 1, virus 2, and virus 3 were designated as Magnaporthe oryzae botourmiavirus 5, 6, and 7 (MOBV5, MOBV6, and MOBV7), respectively. Our results suggest that four distinct botourmiaviruses, MOBV2, MOBV5, MOBV6, and MOBV7, co-infect a single strain of Magnaporthe oryzae, and MOBV5, MOBV6, and MOBV7 are members of three unclassified genera in the family Botourmiaviridae.


Subject(s)
Ascomycota/virology , Fungal Viruses/classification , Fungal Viruses/physiology , Amino Acid Sequence , Cloning, Molecular , Genome, Viral , Genomics/methods , Nucleic Acid Conformation , Open Reading Frames , Oryza/microbiology , Phylogeny , Plant Diseases/microbiology , RNA Viruses/genetics , RNA, Viral , Sequence Analysis, DNA
15.
Front Microbiol ; 8: 2208, 2017.
Article in English | MEDLINE | ID: mdl-29176968

ABSTRACT

Coniothyrium minitans is an important mycoparasite of Sclerotinia sclerotiorum. In addition, it also produces small amounts of antifungal substances. ZS-1TN1812, an abnormal mutant, was originally screened from a T-DNA insertional library. This mutant showed abnormal growth phenotype and could significantly inhibit the growth of S. sclerotiorum when dual-cultured on a PDA plate. When spraying the filtrate of ZS-1TN1812 on the leaves of rapeseed, S. sclerotiorum infection was significantly inhibited, suggesting that the antifungal substances produced by this mutant were effective on rapeseed leaves. The thermo-tolerant antifungal substances could specifically suppress the growth of S. sclerotiorum, but could not significantly suppress the growth of another fungus, Colletotrichum higginsianum. However, C. higginsianum was more sensitive to proteinous antibiotics than S. sclerotiorum. The T-DNA insertion in ZS-1TN1812 activated the expression of CmSIT1, a gene involved in siderophore-mediated iron transport. It was also determined that mutant ZS-1TN1812 produced hypha with high iron levels. In the wild-type strain ZS-1, CmSIT1 was expressed only when in contact with S. sclerotiorum, and consistent overexpression of CmSIT1 showed similar phenotypes as ZS-1TN1812. Therefore, activated expression of CmSIT1 leads to the enhanced antifungal ability, and CmSIT1 is a potential gene for improving the control ability of C. minitans.

16.
Front Microbiol ; 8: 2540, 2017.
Article in English | MEDLINE | ID: mdl-29375495

ABSTRACT

Sclerotinia sclerotiorum is a devastating plant pathogen that attacks numerous economically important broad acre and vegetable crops worldwide. Mycoviruses are widespread viruses that infect fungi, including S. sclerotiorum. As there were no previous reports of the presence of mycoviruses in this pathogen in Australia, studies were undertaken using RNA_Seq analysis to determine the diversity of mycoviruses in 84 Australian S. sclerotiorum isolates collected from various hosts. After RNA sequences were subjected to BLASTp analysis using NCBI database, 285 contigs representing partial or complete genomes of 57 mycoviruses were obtained, and 34 of these (59.6%) were novel viruses. These 57 viruses were grouped into 10 distinct lineages, namely Endornaviridae (four novel mycoviruses), Genomoviridae (isolate of SsHADV-1), Hypoviridae (two novel mycoviruses), Mononegavirales (four novel mycovirusess), Narnaviridae (10 novel mycoviruses), Partitiviridae (two novel mycoviruses), Ourmiavirus (two novel mycovirus), Tombusviridae (two novel mycoviruses), Totiviridae (one novel mycovirus), Tymovirales (five novel mycoviruses), and two non-classified mycoviruses lineages (one Botrytis porri RNA virus 1, one distantly related to Aspergillus fumigatus tetramycovirus-1). Twenty-five mitoviruses were determined and mitoviruses were dominant in the isolates tested. This is not only the first study to show existence of mycoviruses in S. sclerotiorum in Australia, but highlights how they are widespread and that many novel mycoviruses occur there. Further characterization of these mycoviruses is warranted, both in terms of exploring these novel mycoviruses for innovative biocontrol of Sclerotinia diseases and in enhancing our overall knowledge on viral diversity, taxonomy, ecology, and evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...