Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475093

ABSTRACT

With the advancement of engineering techniques, underground shield tunneling projects have also started incorporating emerging technologies to monitor the forces and displacements during the construction and operation phases of shield tunnels. Monitoring devices installed on the tunnel segment components generate a large amount of data. However, due to various factors, data may be missing. Hence, the completion of the incomplete data is imperative to ensure the utmost safety of the engineering project. In this research, a missing data imputation technique utilizing Random Forest (RF) is introduced. The optimal combination of the number of decision trees, maximum depth, and number of features in the RF is determined by minimizing the Mean Squared Error (MSE). Subsequently, complete soil pressure data are artificially manipulated to create incomplete datasets with missing rates of 20%, 40%, and 60%. A comparative analysis of the imputation results using three methods-median, mean, and RF-reveals that this proposed method has the smallest imputation error. As the missing rate increases, the mean squared error of the Random Forest method and the other two methods also increases, with a maximum difference of about 70%. This indicates that the random forest method is suitable for imputing monitoring data.

2.
Sensors (Basel) ; 24(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38339583

ABSTRACT

The confining pressure has a great effect on the internal force of the tunnel. During construction, the confining pressure which has a crucial impact on tunnel construction changes due to the variation of groundwater level and applied load. Therefore, the safety of tunnels must have the magnitude of confining pressure accurately estimated. In this study, a complete tunnel confining pressure time axis was obtained through high-frequency field monitoring, the data are segmented into a training set and a testing set. Using GRU and RNN models, a confining pressure prediction model was established, and the prediction results were analyzed. The results indicate that the GRU model has a fast-training speed and higher accuracy. On the other hand, the training speed of the RNN model is slow, with lower accuracy. The dynamic characteristics of soil pressure during tunnel construction require accurate prediction models to maintain the safety of the tunnel. The comparison between GRU and RNN models not only highlights the advantages of the GRU model but also emphasizes the necessity of balancing speed accuracy in tunnel construction confining pressure prediction modeling. This study is helpful in improving the understanding of soil pressure dynamics and developing effective prediction tools to promote safer and more reliable tunnel construction practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...