Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1054736, 2023.
Article in English | MEDLINE | ID: mdl-36866363

ABSTRACT

The seeds of Panax notoginseng (Burk.) F. H. Chen are typically characterized by their recalcitrance and after-ripening process and exhibit a high water content at harvest as well as a high susceptibility to dehydration. Storage difficulty and the low germination of recalcitrant seeds of P. notoginseng are known to cause an obstacle to agricultural production. In this study, the ratio of embryo to endosperm (Em/En) in abscisic acid (ABA) treatments (1 mg·l-1 and 10 mg·l-1, LA and HA) was 53.64% and 52.34%, respectively, which were lower than those in control check (CK) (61.98%) at 30 days of the after-ripening process (DAR). A total of 83.67% of seeds germinated in the CK, 49% of seeds germinated in the LA treatment, and 37.33% of seeds germinated in the HA treatment at 60 DAR. The ABA, gibberellin (GA), and auxin (IAA) levels were increased in the HA treatment at 0 DAR, while the jasmonic acid (JA) levels were decreased. ABA, IAA, and JA were increased, but GA was decreased with HA treatment at 30 DAR. A total of 4,742, 16,531, and 890 differentially expressed genes (DEGs) were identified between the HA-treated and CK groups, respectively, along with obvious enrichment in the ABA-regulated plant hormone pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. The expression of pyracbactin resistance-like (PYL) and SNF1-related protein kinase subfamily 2 (SnRK2s) increased in the ABA-treated groups, whereas the expression of type 2C protein phosphatase (PP2C) decreased, both of which are related to the ABA signaling pathway. As a result of the changes in expression of these genes, increased ABA signaling and suppressed GA signaling could inhibit the growth of the embryo and the expansion of developmental space. Furthermore, our results demonstrated that MAPK signaling cascades might be involved in the amplification of hormone signaling. Meanwhile, our study uncovered that the exogenous hormone ABA could inhibit embryonic development, promote dormancy, and delay germination in recalcitrant seeds. These findings reveal the critical role of ABA in regulating the dormancy of recalcitrant seeds, and thereby provide a new insight into recalcitrant seeds in agricultural production and storage.

2.
BMC Genomics ; 24(1): 126, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932328

ABSTRACT

BACKGROUND: Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS: In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS: We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.


Subject(s)
Panax notoginseng , Panax notoginseng/genetics , Panax notoginseng/metabolism , Dehydration/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Seeds/metabolism , Embryonic Development , Gene Expression Regulation, Plant
3.
BMC Plant Biol ; 23(1): 67, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36721119

ABSTRACT

BACKGROUND: Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS: In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS: Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.


Subject(s)
Panax notoginseng , Plants, Medicinal , Plant Growth Regulators , Germination , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...