Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 30(5): e14726, 2024 05.
Article in English | MEDLINE | ID: mdl-38715251

ABSTRACT

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Subject(s)
Astrocytes , Hypothermia , Nociception , Preoptic Area , Animals , Preoptic Area/drug effects , Preoptic Area/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Nociception/physiology , Hypothermia/chemically induced , Male , Mice , Receptors, Purinergic P1/metabolism , Mice, Inbred C57BL , Adenosine/metabolism , Capsaicin/pharmacology , Formaldehyde/toxicity , Formaldehyde/pharmacology
2.
Theranostics ; 14(2): 480-495, 2024.
Article in English | MEDLINE | ID: mdl-38169536

ABSTRACT

Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.


Subject(s)
Anesthesia , Motor Cortex , Mice , Animals , Consciousness/physiology , Sevoflurane/adverse effects , Purkinje Cells/physiology , Calcium , Unconsciousness/chemically induced , Neurons , Glutamates/adverse effects , gamma-Aminobutyric Acid
3.
Mol Neurobiol ; 61(2): 883-899, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37668962

ABSTRACT

OBJECTIVE: Prolonged sleep deprivation is known to have detrimental effects on the hippocampus during development or in adulthood. Furthermore, it is well-established that sleep deprivation disrupts energy metabolism broadly. SIRT6 is a critical regulator of energy metabolism in both central and peripheral tissues. This study aims to investigate the role of SIRT6 in modulating hippocampal neurogenesis following sleep deprivation during development, and elucidate the underlying mechanism. METHODS: Male Sprague-Dawley rats, aged three weeks, were subjected to 2 weeks of sleep deprivation using the modified multiple platform method. Metabolomic profiling was carried out using the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC‒ESI‒MS/MS). To investigate the role of SIRT6 in energy metabolism, the rats were administered with either the SIRT6-specific inhibitor, OSS128167, or SIRT6-overexpressing adeno-associated virus (AAV). Hippocampal neurogenesis was assessed by immunostaining with markers for neural stem cells (SOX2), immature neurons [doublecortin (DCX)] and newborn cells (BrdU). Sparse labeling of adult neurons was used to determine the density of dendritic spines in the dentate gyrus (DG). The Y-maze and novel object recognition (NOR) tests were performed to evaluate the spatial and recognition memory. SIRT6 expression was examined using immunofluorescence and western blotting (WB). The inhibition of SIRT6 was confirmed by assessing the acetylation of histone 3 lysine 9 (aceH3K9), a well-known substrate of SIRT6, through WB. RESULTS: Sleep deprivation for a period of two weeks leads to inhibited hippocampal neurogenesis, reduced density of dendritic spines in the DG, and impaired memory, accompanied by decreased SIRT6 expression and disrupted energy metabolism. Similar to sleep deprivation, administration of OSS128167 significantly decreased energy metabolism, leading to reduced neurogenesis and memory dysfunction. Notably, the abnormal hippocampal energy metabolism, neurogenetic pathological changes and memory dysfunction caused by sleep deprivation were alleviated by SIRT6 overexpression in the DG. CONCLUSION: Our results suggest that SIRT6 plays a critical role in maintaining energy metabolism homeostasis in the hippocampus after sleep deprivation, promoting hippocampal neurogenesis and enhancing memory during development.


Subject(s)
Sirtuins , Sleep Deprivation , Animals , Male , Rats , Dentate Gyrus/metabolism , Energy Metabolism , Hippocampus/metabolism , Neurogenesis , Rats, Sprague-Dawley , Sirtuins/metabolism , Sleep Deprivation/metabolism , Tandem Mass Spectrometry
5.
Brain Res Bull ; 172: 79-88, 2021 07.
Article in English | MEDLINE | ID: mdl-33895270

ABSTRACT

Age-related cognitive impairment is associated with diminished autophagy and progressively increased neuroinflammation. Histone acetylation has been shown to be a key process in sevoflurane-induced neurobehavioral abnormalities. Here, we investigated whether histone acetylation regulates the interaction between autophagy and the NLRP3 inflammasome in models of sevoflurane-induced cognitive impairment and explored the underlying molecular mechanisms. Aged C57BL/6 J mice and cultured primary hippocampal neurons were exposed to 3% sevoflurane for 2 h. Hippocampal tissue samples and hippocampal neurons were harvested. The processes of histone acetylation and autophagy and the activation of the NLRP3 inflammasome were observed using western blotting, immunofluorescence staining, and transmission electron microscopy. Suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylases, increased histone H3 and H4 acetylation in both the mouse hippocampus and primary neurons. Concomitantly, sevoflurane upregulated components of the NLRP3 inflammasome (NLRP3, cleaved caspase-1, and IL-1ß) by promoting autophagic degradation in the aging brain. Cognitive deficits and inadequate autophagy induced by sevoflurane were reversed and NLRP3 inflammasome activation was inhibited by SAHA. Treatment with 3-MA, an autophagy inhibitor, eliminated the neuroprotective effects of SAHA on improving cognition in mice, activating autophagy and downregulating the NLRP3 inflammasome. Based on these results, histone acetylation activates autophagy plays an important role in inhibiting the activation of the NLRP3 inflammasome to protect the host from excessive neuroinflammation and sevoflurane-induced cognitive dysfunction in the aging brain.


Subject(s)
Autophagy/drug effects , Cognitive Dysfunction/metabolism , Histones/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sevoflurane/adverse effects , Acetylation , Aging/metabolism , Animals , Cognitive Dysfunction/chemically induced , Hippocampus/drug effects , Hippocampus/metabolism , Histone Deacetylase Inhibitors/pharmacology , Interleukin-1beta/metabolism , Maze Learning/drug effects , Mice , Neurons/drug effects , Neurons/metabolism , Vorinostat/pharmacology
6.
Neuroscience ; 432: 73-83, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32109532

ABSTRACT

The possibility that exposure to inhalation anaesthetics inhibits neurogenesis and results in memory deficits has attracted considerable interest over the past decade. This study was designed to investigate the mechanism of the sevoflurane exposure-induced decline in hippocampal neurogenesis. Young mice were anaesthetized with a gaseous mixture of 3.0% sevoflurane/60% oxygen 2 h daily for three consecutive days. Sodium butyrate (NaB) administration began 2 h prior to anaesthesia and continued daily until the end of behavioural tests. The Morris water maze (MWM) test was used to determine spatial learning and memory performance. We assessed the effect of repeated sevoflurane exposure on histone acetylation and the expression of brain-derived neurotropic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), in the hippocampus by Western blot (WB). To detect neurogenesis, we first counted the number of neural stem cells (NSCs); we then assessed their proliferation level by immunohistochemistry and estimated the number of new-born cells by immunofluorescence. We found that sevoflurane induced learning and memory deficits in young mice 4 weeks after sevoflurane exposure and that NaB injection restored histone acetylation and improved the performance of the mice in the MWM. NaB also increased the number and proliferation of NSCs and neonatal cells, which were inhibited by sevoflurane. Concomitantly, BDNF and TrkB expression, which was decreased by sevoflurane, was also restored by NaB. Our study showed that sevoflurane affects long-term neurocognitive function and neurogenesis in young mice. Normalization of histone acetylation may alleviate the neurodevelopmental side effects of this anaesthetic.


Subject(s)
Hippocampus , Histones , Acetylation , Animals , Hippocampus/metabolism , Histones/metabolism , Maze Learning , Mice , Neurogenesis , Sevoflurane/toxicity
7.
Cell Mol Neurobiol ; 40(6): 879-895, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31884568

ABSTRACT

Sevoflurane, which is widely used in paediatric anaesthesia, induces neural apoptosis in the developing brain and cognitive impairment in young mammals. Glucose hypometabolism is the key pathophysiological modulator of cognitive dysfunction. However, the effects and mechanism of sevoflurane on cerebral glucose metabolism after its use as an anaesthetic and its complete elimination are still unknown. We therefore investigated the influence of sevoflurane on neuronal glucose transporter isoform 3 (GLUT3) expression, glucose metabolism and apoptosis in vivo and in vitro and on neurocognitive function in young mice 24 h after the third exposure to sevoflurane. Postnatal day 14 (P14) mice and neural cells were exposed to 3% sevoflurane 2 h daily for three days. We found that sevoflurane anaesthesia decreased GLUT3 gene and protein expression in the hippocampus and temporal lobe, consistent with a decrease in glucose metabolism in the hippocampus and temporal lobe observed by [18F] fluorodeoxyglucose positron emission tomography (18F-FDG PET). Moreover, sevoflurane anaesthesia increased the number of TUNEL-positive cells and the levels of Bax, cleaved caspase 3 and cleaved PARP and reduced Bcl-2 levels in the hippocampus and temporal lobe. Young mice exposed to sevoflurane multiple times also showed learning and memory impairment. In addition, sevoflurane inhibited GLUT3 expression in primary hippocampal neurons and PC12 cells. GLUT3 overexpression in cultured neurons ameliorated the sevoflurane-induced decrease in glucose utilization and increase in the apoptosis rate. These data indicate that GLUT3 deficiency may contribute to sevoflurane-induced learning and memory deficits in young mice.


Subject(s)
Aging/metabolism , Glucose Transporter Type 3/metabolism , Learning , Memory Disorders/metabolism , Memory Disorders/physiopathology , Sevoflurane/adverse effects , Animals , Apoptosis/drug effects , Brain/metabolism , Cell Membrane/metabolism , Cells, Cultured , Glucose/metabolism , Glucose Transporter Type 3/genetics , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , PC12 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...