Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 737
Filter
1.
Article in English | MEDLINE | ID: mdl-38836725

ABSTRACT

Background: Peritoneal lesions present diagnostic challenges, necessitating precise imaging techniques. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) offers a promising approach for accurate diagnosis, aiding in optimal patient management and treatment planning. Objective: This study aims to assess the diagnostic efficacy of EUS-FNA in peritoneal lesions to offer insight in guiding optimal patient management. Methods: A prospective observational study was conducted, and a total of 58 patients who underwent EUS-FNA of the peritoneum at our hospital between October 2021 and November 2021 were included. The ultrasound diagnostic instrument facilitated puncture guidance, with 2-5 punctures performed in various parts of the selected peritoneal lesion areas. The analysis encompassed evaluating the sensitivity, specificity, positive predictive value, and negative predictive value of biopsy for diagnosing peritoneal-associated lesions, alongside assessing the number of punctures, puncture satisfaction, and incidence of postoperative complications. Results: The included patients undergoing EUS-FNA revealed that 41 (70.69%) had malignant lesions, while 17 (29.31%) presented with benign lesions. The diagnostic accuracy of EUS-FNA for peritoneal lesions was determined to be 94.83%, with a diagnostic sensitivity of 97.30% for malignant tumors, specificity of 90.48%, positive predictive value of 94.74%, and negative predictive value of 95%. Lesions exhibited a size range of 2.5cm × 2.9cm to 15.2cm × 9.8cm. Each patient underwent 2-5 punctures (3.3 ± 1.4), with a puncture satisfaction rate of 96.55%. The incidence of postoperative complications following EUS-FNA was found to be 3.45%. Conclusion: EUS-FNA exhibits substantial diagnostic utility for peritoneal-related lesions, marked by exceptional accuracy, sensitivity, specificity, and favorable safety. Its clinical adoption is warranted, promising improved patient care and management.

2.
J Adv Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844123

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is the most common arthritis that is characterized by the progressive synovial inflammation and loss of articular cartilage. Although GYY4137 is a novel and slow-releasing hydrogen sulfide (H2S) donor with potent anti-inflammatory properties that may modulate the progression of OA, its underlying mechanism remains unclear. OBJECTIVES: In this study, we validated the protective role of GYY4137 against OA pathological courses and elucidated its underlying regulatory mechanisms. METHODS: Cell transfection, immunofluorescence staining, EdU assay, transmission electron microscopy, mitochondrial membrane potential measurement, electrophoretic mobility shift assay, sulfhydration assay, qPCR and western blot assays were performed in the primary mouse chondrocytes or the mouse macrophage cell line raw 264.7 for in vitro study. DMM-induced OA mice model and Macrophage-specific p65 knockout (p65f/f LysM-CreERT2) mice on the C57BL/6 background were used for in vivo study. RESULTS: We found that GYY4137 can alleviate OA progress by suppressing synovium pyroptosis in vivo. Moreover, our in vitro data revealed that GYY4137 attenuates inflammation-induced NLRP3 and caspase-1 activation and results in a decrease of IL-1ß production in macrophages. Mechanistically, GYY4137 increased persulfidation of NF-kB p65 in response to inflammatory stimuli that results in a decrease of cellular reactive oxygen species (ROS) accumulation and ameliorates mitochondrial dysfunctions. Using site-directed mutagenesis, we showed that H2S persulfidates cysteine38 in p65 protein and hampers p65 transcriptional activity, and p65 mutant impaired macrophage responses to GYY4137. CONCLUSION: These findings suggest a mechanism by which GYY4137 through redox modification of p65 participates in inhibiting NLRP3 activation by OA to regulate inflammatory responses. Thus, we propose that GYY4137 represents a promising novel therapeutic strategy for the treatment of OA.

3.
Respir Res ; 25(1): 226, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811960

ABSTRACT

BACKGROUND: This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 - 2N0M0 (cT1 - 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. METHODS: By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined the incidence of OLM in cT1 - 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). RESULTS: The initial investigation revealed a 33.9% OLM positivity rate in cT1 - 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for cT1 - 2N0M0 SCLC patients. CONCLUSIONS: The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 - 2N0M0 SCLC.


Subject(s)
Lung Neoplasms , Lymphatic Metastasis , Small Cell Lung Carcinoma , Tomography, X-Ray Computed , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/epidemiology , Small Cell Lung Carcinoma/pathology , Male , Female , Middle Aged , Retrospective Studies , Aged , Lymphatic Metastasis/diagnostic imaging , Incidence , Tomography, X-Ray Computed/methods , Predictive Value of Tests , Contrast Media , Neoplasm Staging/methods , Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Aged, 80 and over , Radiomics
4.
Mol Cancer ; 23(1): 113, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802795

ABSTRACT

BACKGROUND: The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS: Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS: CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION: This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Neoplasm Proteins , RNA, Circular , Animals , Female , Humans , Male , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Ferroptosis/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Circular/genetics , Xenograft Model Antitumor Assays
5.
BMC Neurol ; 24(1): 175, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789928

ABSTRACT

BACKGROUND: Acute ischemic stroke (AIS) is one of the most common cerebrovascular diseases which accompanied by a disruption of aminothiols homeostasis. To explore the relationship of aminothiols with neurologic impairment severity, we investigated four aminothiols, homocysteine (Hcy), cysteine (Cys), cysteinylglycine (CG) and glutathione (GSH) in plasma and its influence on ischemic stroke severity in AIS patients. METHODS: A total of 150 clinical samples from AIS patients were selected for our study. The concentrations of free reduced Hcy (Hcy), own oxidized Hcy (HHcy), free reduced Cys (Cys), own oxidized Cys (cysteine, Cyss), free reduced CG (CG) and free reduced GSH (GSH) were measured by our previously developed hollow fiber centrifugal ultrafiltration (HFCF-UF) method coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The concentration ratio of Hcy to HHcy (Hcy/HHcy), Cys to Cyss (Cys/Cyss) were also calculated. The neurologic impairment severity of AIS was evaluated using National Institutes of Health Stroke Scale (NIHSS). The Spearman correlation coefficient and logistic regression analysis was used to estimate and perform the correlation between Hcy, HHcy, Cys, Cyss, CG, GSH, Hcy/HHcy, Cys/Cyss and total Hcy with NIHSS score. RESULTS: The reduced Hcy and Hcy/HHcy was both negatively correlated with NIHSS score in AIS patients with P = 0.008, r=-0.215 and P = 0.002, r=-0.249, respectively. There was no significant correlation of Cys, CG, GSH, HHcy, Cyss, Cys/Cyss and total Hcy with NIHSS score in AIS patients with P value > 0.05. CONCLUSIONS: The reduced Hcy and Hcy/HHcy, not total Hcy concentration should be used to evaluate neurologic impairment severity of AIS patient.


Subject(s)
Cysteine , Glutathione , Homocysteine , Ischemic Stroke , Oxidation-Reduction , Severity of Illness Index , Humans , Male , Female , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Homocysteine/blood , Aged , Middle Aged , Cysteine/blood , Glutathione/blood , Dipeptides/blood , Aged, 80 and over
6.
Int J Ophthalmol ; 17(5): 861-868, 2024.
Article in English | MEDLINE | ID: mdl-38766350

ABSTRACT

AIM: To investigate macular microperimetry in patients with early primary open angle glaucoma (POAG) using a new custom-made pattern, and analyze the characteristics of macular sensitivity. METHODS: This case-control study included 38 patients with POAG, who were divided into pre-perimetric glaucoma (18 eyes of 18 patients), early-stage (20 eyes of 20 patients), and control (20 eyes of 20 patients) groups. All subjects underwent standard 24-2 humphrey visual field test. An MP-3 microperimeter with a new custom-made pattern (28 testing points distributed in four quadrants, covering the central 10° of the retina) was used to evaluate macular sensitivity. Ganglion cell complex (GCC) thicknesses were examined using an RS-3000 Advance OCT system. The features of structure and function were analysed per quadrant. RESULTS: The pre-perimetric glaucoma group had significantly lower inferior hemifield macular sensitivity compared to controls (P<0.05). The early-stage POAG group had significantly lower average, inferior hemifield, inferonasal, and inferotemporal mean sensitivities compared to the pre-perimetric glaucoma group (P<0.05), and lower macular sensitivity in all sectors compared to controls (P<0.05). Regarding GCC thickness, all sectors in the early-stage POAG group became thinner compared to those in controls (P<0.05); whereas all sectors in the early-stage POAG group, except the superonasal quadrant, became thinner compared to those in the pre-perimetric glaucoma group (P<0.05). Macular sensitivity and GCC thickness were significantly associated in each sector. The inferotemporal quadrant had the highest correlation coefficients (0.840). The structure-function relationship for the inferonasal and inferotemporal sectors was stronger compared to the corresponding superior sectors. CONCLUSION: Microperimetry reveals variations in macular sensitivity in patients with early glaucoma earlier than conventional perimetry, particularly in pre-perimetric glaucoma cases in which it might be undetectable by conventional methods. The new custom-made pattern may improve the accuracy of microperimetry by enhancing point arrangement and reducing fatigue effects. Macular sensitivity measured by MP-3 with this pattern shows statistically significant structural and functional associations with the thicknesses of the GCC.

7.
Proc Natl Acad Sci U S A ; 121(16): e2322415121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38602918

ABSTRACT

Localized deformation and randomly shaped imperfections are salient features of buckling-type instabilities in thin-walled load-bearing structures. However, it is generally agreed that their complex interactions in response to mechanical loading are not yet sufficiently understood, as evidenced by buckling-induced catastrophic failures which continue to today. This study investigates how the intimate coupling between localization mechanisms and geometric imperfections combine to determine the statistics of the pressure required to buckle (the illustrative example of) a hemispherical shell. The geometric imperfections, in the form of a surface, are defined by a random field generated over the nominally hemispherical shell geometry, and the probability distribution of the buckling pressure is computed via stochastic finite element analysis. Monte-Carlo simulations are performed for a wide range of the shell's radius to thickness ratio, as well as the correlation length of the spatial distribution of the imperfection. The results show that over this range, the buckling pressure is captured by the Weibull distribution. In addition, the analyses of the deformation patterns observed during the simulations provide insights into the effects of certain characteristic lengths on the local buckling that triggers global instability. In light of the simulation results, a probabilistic model is developed for the statistics of the buckling load that reveals how the dimensionless radius plays a dual role which remained hidden in previous deterministic analyses. The implications of the present model for reliability-based design of shell structures are discussed.

8.
Quant Imaging Med Surg ; 14(4): 3131-3145, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617169

ABSTRACT

Background: The MYCN copy number category is closely related to the prognosis of neuroblastoma (NB). Therefore, this study aimed to assess the predictive ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features for MYCN copy number in NB. Methods: A retrospective analysis was performed on 104 pediatric patients with NB that had been confirmed by pathology. To develop the Bio-omics model (B-model), which incorporated clinical and biological aspects, PET/CT radiographic features, PET quantitative parameters, and significant features with multivariable stepwise logistic regression were preserved. Important radiomics features were identified through least absolute shrinkage and selection operator (LASSO) and univariable analysis. On the basis of radiomics features obtained from PET and CT scans, the radiomics model (R-model) was developed. The significant bio-omics and radiomics features were combined to establish a Multi-omics model (M-model). The above 3 models were established to differentiate MYCN wild from MYCN gain and MYCN amplification (MNA). The calibration curve and receiver operating characteristic (ROC) curve analyses were performed to verify the prediction performance. Post hoc analysis was conducted to compare whether the constructed M-model can distinguish MYCN gain from MNA. Results: The M-model showed excellent predictive performance in differentiating MYCN wild from MYCN gain and MNA, which was better than that of the B-model and R-model [area under the curve (AUC) 0.83, 95% confidence interval (CI): 0.74-0.92 vs. 0.81, 95% CI: 0.72-0.90 and 0.79, 95% CI: 0.69-0.89]. The calibration curve showed that the M-model had the highest reliability. Post hoc analysis revealed the great potential of the M-model in differentiating MYCN gain from MNA (AUC 0.95, 95% CI: 0.89-1). Conclusions: The M-model model based on bio-omics and radiomics features is an effective tool to distinguish MYCN copy number category in pediatric patients with NB.

9.
Chem Biol Drug Des ; 103(4): e14519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570708

ABSTRACT

Kaempferol (KPR), a flavonoid compound found in various plants and foods, has garnered attention for its anti-inflammatory, antioxidant, and anticancer properties. In preliminary studies, KPR can modulate several signaling pathways involved in inflammation, making it a candidate for treating cholecystitis. This study aimed to explore the effects and mechanisms of KPR on lipopolysaccharide (LPS)-induced human gallbladder epithelial cells (HGBECs). To assess the impact of KPR on HGBECs, the HGBECs were divided into control, KPR, LPS, LPS + KPR, and LPS + UDCA groups. Cell viability and cytotoxicity were evaluated by MTT assay and lactate dehydrogenase (LDH) assay, respectively, and concentrations of KPR (10-200 µM) were tested. LPS-induced inflammatory responses in HGBECs were to create an in vitro model of cholecystitis. The key inflammatory markers (IL-1ß, IL-6, and TNF-α) levels were quantified using ELISA, The modulation of the MAPK/NF-κB signaling pathway was measured by western blot using specific antibodies against pathway components (p-IκBα, IκBα, p-p65, p65, p-JNK, JNK, p-ERK, ERK, p-p38, and p38). The cell viability and LDH levels in HGBECs were not significantly affected by 50 µM KPR, thus it was selected as the optimal KPR intervention concentration. KPR increased the viability of LPS-induced HGBECs. Additionally, KPR inhibited the inflammatory factors level (IL-1ß, IL-6, and TNF-α) and protein expression (iNOS and COX-2) in LPS-induced HGBECs. Furthermore, KPR reversed LPS-induced elevation of p-IκBα/IκBα, p-p65/p65, p-JNK/JNK, p-ERK/ERK, and p-p38/p38 ratios. KPR attenuates the LPS-induced inflammatory response in HGBECs, possibly by inhibiting MAPK/NF-κB signaling.


Subject(s)
Cholecystitis , NF-kappa B , Humans , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , NF-KappaB Inhibitor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Kaempferols/pharmacology , Signal Transduction , Inflammation/chemically induced , Inflammation/drug therapy , Epithelial Cells/metabolism , MAP Kinase Signaling System
10.
Biotechnol J ; 19(4): e2400078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651251

ABSTRACT

Due to their high-quality characteristics, Chinese hamster ovary (CHO) cells have become the most widely used and reliable host cells for the production of recombinant therapeutic proteins in the biomedical field. Previous studies have shown that the m6A reader YTHDF3, which contains the YTH domain, can affect a variety of biological processes by regulating the translation and stability of target mRNAs. This study investigates the effect of YTHDF3 on transgenic CHO cells. The results indicate that stable overexpression of YTHDF3 significantly enhances recombinant protein expression without affecting host cell growth. Transcriptome sequencing indicated that several genes, including translation initiation factor, translation extension factor, and ribosome assembly factor, were upregulated in CHO cells overexpressing YTHDF3. In addition, cycloheximide experiments confirmed that YTHDF3 enhanced transgene expression by promoting translation in CHO cells. In conclusion, the findings in this study provide a novel approach for mammalian cell engineering to increase protein productivity by regulating m6A.


Subject(s)
Cricetulus , Protein Biosynthesis , RNA-Binding Proteins , Recombinant Proteins , Animals , CHO Cells , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Biosynthesis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cricetinae
11.
Environ Sci Pollut Res Int ; 31(20): 29763-29776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592631

ABSTRACT

Microorganisms are highly sensitive to toxic metal pollution and play an important role in the material cycling and energy flow of the water ecosystem. Herein, 13 sediment samples from Junchong Reservoir (Guangxi Province, China) were collected in December 2021. The spatial distribution of pollution levels for toxic metals and the effects of toxic metals on the composition, functional characteristics, and metabolism of microorganisms were investigated. The results demonstrated that the area is a proximate area to industrial zones with severity of toxic metal pollution. Their mean concentrations of As, Cu, Zn, and Pb were up to 128.79 mg/kg, 57.62 mg/kg, 594.77 mg/kg, and 97.12 mg/kg respectively. There was a strong correlation between As, Cu, Zn, and Pb, with the highest correlation coefficient reaching 0.94. As the level of toxic metal pollution increases, the diversity and abundance of microorganisms gradually decrease. Compared to those with lower pollution levels, the Shannon index in regions with higher pollution levels decreases by up to 0.373, and the Chao index decreases by up to 143.507. However, the relative abundance of Bacteroidota, Patescibacteria, and Chloroflexi increased by 23%, 20%, and 5%, respectively, indicating their higher adaptability to toxic metals. Furthermore, microbial carbon and nitrogen metabolism were also affected by the presence of toxic metals. FAPROTAX analysis demonstrated an abundant reduction of ecologically functional groups associated with carbon and nitrogen transformations under high toxic metal pollution levels. KEGG pathway analysis indicated that carbon fixation and nitrogen metabolism pathways were inhibited with increasing toxic metal concentrations. These findings would contribute to a better understanding of the effects of toxic metal pollution on sediment microbial communities and function, shedding light on the ecological consequences of toxic metal contamination.


Subject(s)
Carbon , Geologic Sediments , Nitrogen , Geologic Sediments/chemistry , China , Water Pollutants, Chemical/toxicity , Microbiota/drug effects , Environmental Monitoring , Metals, Heavy
12.
Dalton Trans ; 53(13): 5749-5769, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38441123

ABSTRACT

With the rapidly growing demand for clean energy and energy interconnection, there is an urgent need for rapid and high-capacity energy storage technologies to realize large-scale energy storage, transfer energy, and establish the energy internet. Supercapacitors, which have advantages such as high specific capacitance, fast charging and discharging rates, and long cycle lifetimes, are being widely used in electric vehicles, information technology, aerospace, and other fields. The performance of supercapacitors is crucially dependent on electrode materials. These can be categorized into electric double-layer capacitors and pseudocapacitors, primarily made from carbon and transition metal oxides, respectively. However, effectively monitoring the physicochemical properties of electrode materials during preparation and processing is challenging, which limits the improvement of supercapacitors' performance. Plasma materials preparation technology can effectively affect the materials preparation processing by energetic electrons, ions, free radicals, and multiple effects in plasma, which are easily manipulated by operation parameters. Therefore, plasma material preparation technology is considered a promising method to precisely monitor the physicochemical and electrochemical properties of energy storage materials and has been widely studied. This paper provides an overview of plasma materials preparation mechanisms, and details of the plasma technology application in the preparation of transition metal hybrids, carbon, and composite electrode materials, as well as a comparison with traditional methods. In conclusion, the advantages, challenges, and research directions of plasma materials preparation technology in the field of electrode materials preparation are summarized.

13.
Article in English | MEDLINE | ID: mdl-38530339

ABSTRACT

The baijiu fermentation environment hosts a variety of micro-organisms, some of which still remain uncultured and uncharacterized. In this study, the isolation, cultivation and characterization of three novel aerobic bacterial strains are described. The cells of strain REN20T were Gram-negative, strictly aerobic, motile and grew at 26-37 °C, at pH 6.0-9.0 and in the presence of 0-5.0   % (w/v) NaCl. The cells of strain REN29T were Gram-negative, strictly aerobic, motile and grew at 15-30 °C, at pH 6.0-9.0 and in the presence of 0-10.0   % (w/v) NaCl. The cells of strain REN33T were Gram-positive, strictly aerobic, motile and grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-7.0   % (w/v) NaCl. The digital DNA-DNA hybridization and average nucleotide identity by orthology values between type strains in related genera and REN20T (20.3-36.8 % and 79.8-89.9  %), REN29T (20.3-36.8  % and 74.5-88.5  %) and REN33T (22.6-48.6  % and 75.8-84.2  %) were below the standard cut-off criteria for the delineation of bacterial species, respectively. Based on polyphasic taxonomy analysis, we propose three new species, Bosea beijingensis sp. nov. (=REN20T=GDMCC 1.2894T=JCM 35118T), Telluria beijingensis sp. nov. (=REN29T=GDMCC 1.2896T=JCM 35119T) and Agrococcus beijingensis sp. nov. (=REN33T=GDMCC 1.2898T=JCM 35164T), which were recovered during cultivation and isolation from baijiu mash.


Subject(s)
Actinomycetales , Bradyrhizobiaceae , Oxalobacteraceae , Sodium Chloride , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , Bacteria, Aerobic
14.
J Sci Food Agric ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436499

ABSTRACT

BACKGROUND: Baijiu is a well-known alcoholic beverage in China and the quality is determined by various microorganisms during the fermentation process. Yeast is one of the most important microorganisms in the fermentation of baijiu. It has a strong esterification capacity and also affects the aroma. RESULTS: High-throughput sequencing results showed that the fermented grains (jiupei) during baijiu production were mainly composed of eight highly abundant yeast species. The species and abundance of yeasts changed significantly with the fermentation process. The flavor of 30 yeast strains in the jiupei was determined by a sniffing test and gas chromatography-mass spectrometry (GC-MS). The strain with the highest flavor substance content (2.34 mg L-1 ), named YX3205, was identified as Clavispora lusitaniae. Tolerance results showed that C. lusitaniae YX3205 can tolerate up to 15% (v v-1 ) ethanol. In a solid-state simulated fermentation experiment, the content of 24 flavor substances was significantly increased in the fortified group, and the total ester content reached 4240.73 µg kg-1 , which was 2.8 times higher than that of the control group. CONCLUSION: The present study demonstrated the potential of C. lusitaniae YX3205 to enhance the flavor of baijiu, thereby serving as a valuable strain for the improvement of the flavor quality of baijiu. © 2024 Society of Chemical Industry.

15.
Huan Jing Ke Xue ; 45(2): 898-908, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471928

ABSTRACT

Magnetic phosphorous biochar (MPBC) was prepared from Camellia oleifera shells using phosphoric acid activation and iron co-deposition. The materials were characterized and analyzed through scanning electron microscopy (SEM), X-ray diffractometry (XRD), specific surface area and pore size analysis (BET), Fourier infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). MPBC had a high surface area (1 139.28 m2·g-1) and abundant surface functional groups, and it could achieve fast solid-liquid separation under the action of an external magnetic field. The adsorption behavior and influencing factors of sulfamethoxazole (SMX) in water were investigated. The adsorbent showed excellent adsorption properties for SMX under acidic and neutral conditions, and alkaline conditions and the presence of CO32- had obvious inhibition on adsorption. The adsorption process conformed to the quasi-second-order kinetics and Langmuir model. The adsorption rate was fast, and the maximum adsorption capacity reached 356.49 mg·g-1. The adsorption process was a spontaneous exothermic reaction, and low temperature was beneficial to the adsorption. The adsorption mechanism was mainly the chemisorption of pyrophosphate surface functional groups (C-O-P bond) between the SMX molecule and MPBC and also included hydrogen bonding, π-π electron donor-acceptor (π-πEDA) interaction, and a pore filling effect. The development of MPBC adsorbent provides an effective way for resource utilization of waste Camellia oleifera shells and treatment of sulfamethoxazole wastewater.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Sulfamethoxazole/chemistry , Adsorption , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Phosphorus , Kinetics , Magnetic Phenomena
16.
J Neurosurg Case Lessons ; 7(10)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437681

ABSTRACT

BACKGROUND: The authors describe a 60-year-old female who underwent a correlative examination for an accidental scalp injury, revealing a sellar mass, which was surgically excised and pathologically confirmed to be a non-Hodgkin's small B-cell lymphoma. These findings in combination with the immunophenotype led to a final diagnosis of chronic lymphocytic leukemia/small lymphocytic lymphoma. Previous studies have shown that hematological solid tumors occurring in the pituitary gland are extremely rare, and there are only approximately three other cases of living patients with similarities to this case, all of which had ambiguous expression of subsequent hematological treatment. OBSERVATIONS: In this case, the authors used an endoscopic approach to completely excise the tumor. Follow-up of the patient was continued after surgery, and the patient is currently receiving standardized treatment with zanubrutinib. LESSONS: This patient did not have any previous history of tumor, had a good postoperative recovery with a normal quality of life, and still receives hormone replacement and zanubrutinib on a standardized basis. This is a complete case that has not been previously reported and reveals the diagnostic and therapeutic process of rare diseases in the sellar area.

17.
Br J Cancer ; 130(8): 1356-1364, 2024 May.
Article in English | MEDLINE | ID: mdl-38355839

ABSTRACT

BACKGROUND: We aimed to redefine Immune checkpoint inhibitors (ICIs)-responsive "hot" TME and develop a corresponding stratification model to maximize ICIs-efficacy in Hepatocellular Carcinoma (HCC). METHODS: Hypoxic scores were designed, and the relevance to immunotherapy responses were validated in pan-cancers through single cell analysis. Multi-omics analysis using the hypoxic scores and immune infiltrate abundance was performed to redefine the ICIs-responsive TME subtype in HCC patients from TCGA (n = 363) and HCCDB database (n = 228). The immune hypoxic stress index (IHSI) was constructed to stratify the ICIs-responsive TME subtype, with exploring biological mechanism in vitro and in vivo. MRI-radiomics models were built for clinical applicability. RESULTS: The hypoxic scores were lower in the dominant cell-subclusters of responders in pan-cancers. The higher immune infiltrate-normoxic (HIN) subtype was redefined as the ICIs-responsive TME. Stratification of the HIN subtype using IHSI effectively identified ICIs-responders in Melanoma (n = 122) and urological cancer (n = 22). TRAF3IP3, the constituent gene of IHSI, was implicated in ICIs-relevant "immune-hypoxic" crosstalk by stimulating MAVS/IFN-I pathway under normoxic condition. MRI-radiomics models assessing TRAF3IP3 with HIF1A expression (AUC > 0.80) screened ICIs-Responders in HCC cohort (n = 75). CONCLUSION: The hypoxic-immune stratification redefined ICIs-responsive TME and provided MRI-Radiomics models for initial ICIs-responders screening, with IHSI facilitating further identification.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/genetics , Radiomics , Tumor Microenvironment , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Hypoxia , Magnetic Resonance Imaging
18.
Article in English | MEDLINE | ID: mdl-38408517

ABSTRACT

Euryhaline organisms can accumulate organic osmolytes to maintain osmotic balance between their internal and external environments. Proline is a pivotal organic small molecule and plays an important role in osmoregulation that enables marine shellfish to tolerate high-salinity conditions. During high-salinity challenge, NAD kinase (NADK) is involved in de novo synthesis of NADP(H) in living organisms, which serves as a reducing agent for the biosynthetic reactions. However, the role of shellfish NADK in proline biosynthesis remains elusive. In this study, we show the modulation of NADK on proline synthesis in the razor clam (Sinonovacula constricta) in response to osmotic stress. Under acute hypersaline conditions, gill tissues exhibited a significant increase in the expression of ScNADK. To elucidate the role of ScNADK in proline biosynthesis, we performed dsRNA interference in the expression of ScNADK in gill tissues to assess proline content and the expression levels of key enzyme genes involved in proline biosynthesis. The results indicate that the knock-down of ScNADK led to a significant decrease in proline content (P<0.01), as well as the expression levels of two proline synthetase genes P5CS and P5CR involved in the glutamate pathway. Razor clams preferred to use ornithine as substrate for proline synthesis when the glutamate pathway is blocked. Exogenous administration of proline greatly improved cell viability and mitigated cell apoptosis in gills. In conclusion, our results demonstrate the important role of ScNADK in augmenting proline production under high-salinity stress, by which the razor clam is able to accommodate salinity variations in the ecological niche.


Subject(s)
Bivalvia , Phosphotransferases (Alcohol Group Acceptor) , Salt Tolerance , Animals , Bivalvia/metabolism , Proline/metabolism , Glutamates/metabolism
19.
Mol Phylogenet Evol ; 193: 108023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342159

ABSTRACT

The Himalaya-Hengduan Mountains (HHM), a renowned biodiversity hotspot of the world, harbors the most extensive habitats for alpine plants with extraordinary high levels of endemism. Although the general evolution pattern has been elucidated, the underlying processes driving spectacular radiations in many species-rich groups remain elusive. Corydalis DC. is widely distributed throughout the Northern Hemisphere containing more than 500 species, with high diversity in HHM and adjacent regions. Using 95 plastid genes, 3,258,640 nuclear single nucleotide polymorphisms (SNPs) and eight single-copy nuclear genes (SCNs) generated from genome skimming data, we reconstructed a robust time-calibrated phylogeny of Corydalis comprising more than 100 species that represented all subgenera and most sections. Molecular dating indicated that all main clades of Corydalis began to diverge in the Eocene, with the majority of extant species in HHM emerged from a diversification burst after the middle Miocene. Global pattern of mean divergence times indicated that species distributed in HHM were considerably younger than those in other regions, particularly for the two most species-rich clades (V and VI) of Corydalis. The early divergence and the recent diversification of Corydalis were most likely promoted by the continuous orogenesis and climate change associated with the uplift of the Qinghai-Tibetan Plateau (QTP). Our study demonstrates the effectivity of phylogenomic analyses with genome skimming data on the phylogeny of species-rich taxa, and sheds lights on how the uplift of QTP has triggered the evolutionary radiations of large plant genera in HHM and adjacent regions.


Subject(s)
Corydalis , Phylogeny , Himalayas , Biodiversity , Ecosystem , Plants
20.
Cancer Immunol Immunother ; 73(3): 55, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366287

ABSTRACT

BACKGROUND: For patients with unresectable locally advanced esophageal squamous cell carcinoma (ESCC), concurrent chemoradiotherapy (CCRT) is the current standard treatment; however, the prognosis remains poor. Immunotherapy combined with chemotherapy has demonstrated improved survival outcomes in advanced ESCC. Nevertheless, there is a lack of reports on the role of induction immunotherapy plus chemotherapy prior to CCRT for unresectable locally advanced ESCC. Therefore, this study aimed to evaluate the efficacy and safety of induction immunotherapy plus chemotherapy followed by definitive chemoradiotherapy in patients with unresectable locally advanced ESCC. METHODS: This study retrospectively collected clinical data of patients diagnosed with locally advanced ESCC who were treated with radical CCRT between 2017 and 2021 at our institution. The patients were divided into two groups: an induction immunotherapy plus chemotherapy group (induction IC group) or a CCRT group. To assess progression-free survival (PFS) and overall survival (OS), we employed the Kaplan-Meier method after conducting propensity score matching (PSM). RESULTS: A total of 132 patients with unresectable locally advanced ESCC were included in this study, with 61 (45.26%) patients in the induction IC group and 71 (54.74%) patients in the CCRT group. With a median follow-up of 37.0 months, median PFS and OS were 25.2 and 39.2 months, respectively. The patients in the induction IC group exhibited a significant improvement in PFS and OS in comparison with those in the CCRT group (median PFS: not reached [NR] versus 15.9 months, hazard ratio [HR] 0.526 [95%CI 0.325-0.851], P = 0.0077; median OS: NR versus 25.2 months, HR 0.412 [95%CI 0.236-0.719], P = 0.0012). After PSM (50 pairs), both PFS and OS remained superior in the induction IC group compared to the CCRT group (HR 0.490 [95%CI 0.280-0.858], P = 0.011; HR 0.454 [95%CI 0.246-0.837], P = 0.0093), with 2-year PFS rates of 67.6 and 42.0%, and the 2-year OS rates of 74.6 and 52.0%, respectively. Multivariate analysis revealed that lower tumor stage, concurrent chemotherapy using double agents, and induction immunotherapy plus chemotherapy before CCRT were associated with better prognosis. CONCLUSIONS: Our results showed for the first time that induction immunotherapy plus chemotherapy followed by CCRT for unresectable locally advanced ESCC provided a survival benefit with manageable safety profile. More prospective clinical studies should be warranted.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Retrospective Studies , Prospective Studies , Propensity Score , Chemoradiotherapy/methods , Immunotherapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...