Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 13: 860492, 2022.
Article in English | MEDLINE | ID: mdl-35668945

ABSTRACT

Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) is a common severe clinical syndrome in intensive care unit, may lead to a life-threatening form of respiratory failure, resulting in high mortality up to 30-40% in most studies. Nanotechnology-mediated anti-inflammatory therapy is an emerging novel strategy for the treatment of ALI, has been demonstrated with unique advantages in solving the dilemma of ALI drug therapy. Artesunate (ART), a derivative of artemisinin, has been reported to have anti-inflammatory effects. Therefore, in the present study, we designed and synthesized PEGylated ART prodrugs and assessed whether ART prodrugs could attenuate lipopolysaccharide (LPS) induced ALI in vitro and in vivo. All treatment groups were conditioned with ART prodrugs 1 h before challenge with LPS. Significant increased inflammatory cytokines production and decreased GSH levels were observed in the LPS stimulated mouse macrophage cell line RAW264.7. Lung histopathological changes, lung W/D ratio, MPO activity and total neutrophil counts were increased in the LPS-induced murine model of ALI via nasal administration. However, these results can be reversed to some extent by treatment of ART prodrugs. The effectiveness of mPEG2k-SS-ART in inhibition of ALI induced by LPS was confirmed. In conclusion, our results demonstrated that the ART prodrugs could attenuate LPS-induced ALI effectively, and mPEG2k-SS-ART may serve as a novel strategy for treatment of inflammation induced lung injury.

2.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6541-6550, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604902

ABSTRACT

Cannabidiol is the main non-psychoactive component of Cannabis sativa, which has multiple medicinal activities, such as antiepileptic, immunomodulation, analgesic, antioxidant, anticonvulsant, anti-anxiety and other functions. In recent years, it has been found that cannabidiol can inhibit the proliferation of various tumor cells, induce apoptosis and autophagy of tumor cells, arrest cell cycle, interrupt invasion and metastasis of tumor cells, regulate tumor microenvironment, exert synergistic therapy with other chemotherapeutic drugs, and reduce the toxicity of chemotherapeutic drugs. However, its anti-tumor effect remains controversial and its application is limited. The study of microspheres, nano liposomes and other new drug delivery systems can improve the anti-tumor effect of cannabidiol. In this study, the anti-tumor mechanism and application of cannabidiol were summarized and discussed in order to provide inspirations for its further investigation and application.


Subject(s)
Cannabidiol , Cannabis , Neoplasms , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Neoplasms/drug therapy , Apoptosis , Anxiety Disorders/drug therapy , Tumor Microenvironment
3.
Front Cell Neurosci ; 13: 247, 2019.
Article in English | MEDLINE | ID: mdl-31231194

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture.

4.
Acta Physiologica Sinica ; (6): 559-568, 2014.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-256002

ABSTRACT

Adult hippocampal neurogenesis plays important roles in learning, memory and mood regulation. External factors, such as physical exercise, have been found to modulate adult hippocampal neurogenesis. Voluntary running enhances cell proliferation in subgranular zone (SGZ) and increases the number of new born neurons in rodents, but underlying mechanisms are not fully understood. In this study, we used BrdU assay to identify proliferating cells in 2-month-old C57BL/6 mice after 15 days of voluntary wheel running test. mRNA and protein levels for several neural factors in dentate gyrus, Ammon's horn, and cortex were also analyzed by RT-qPCR and Western blot assay after 15 days of voluntary wheel running. Our data show that voluntary wheel running for 15 days elevated the number of proliferation cells in dentate gyrus and significantly up-regulated the mRNA levels of Bdnf, Igf1 and Wnt4. The protein levels of BDNF and IGF1 in dentate gyrus were also increased after voluntary wheel running. These results indicate that the increase of adult hippocampal neurogenesis caused by voluntary wheel running for 15 days might be through up-regulating BDNF, IGF1 and WNT4 in dentate gyrus.


Subject(s)
Animals , Mice , Brain-Derived Neurotrophic Factor , Metabolism , Cell Proliferation , Dentate Gyrus , Cell Biology , Metabolism , Insulin-Like Growth Factor I , Metabolism , Mice, Inbred C57BL , Motor Activity , Neurogenesis , Neurons , Cell Biology , Wnt4 Protein , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...