Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 93(4): 645-651, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32668496

ABSTRACT

The Fenton reaction has the advantages of short reaction time, low cost, no toxicity, and straightforward application and control. The Fenton reaction generates highly reactive HO•, which has been applied effectively. However, the effect of the generated Fe3+ has not been investigated widely. In this study, the Fenton reaction was used to improve the Cr(VI) adsorption and detoxification capacities of chitosan. After the Fenton modification, chitosan efficiently adsorbed Cr(VI) and transformed it into the less toxic Cr(III) in a wide pH range as a result of layer formation, which was described by a sandwich model. The adsorption of Cr(VI) onto the Fenton modified chitosan was in good agreement with the Freundlich adsorption model, and the adsorption capacity exceeded 120 mg/g. During the Fenton reaction, H2 O2 and HO• with high oxidative activity broke the hydrogen bonds in the chitosan structure, resulting in the release of free amine groups for Fe3+ to form metal-binding biopolymers. The distance between the chitosan polymers increased, and additional adsorption sites were created. HCrO4 - entered the gap between the chitosan polymer and was adsorbed on the newly created adsorption sites. The sandwich adsorption model indicated that the Fenton modified chitosan provided a high concentration of active sites for Cr(VI) capture and detoxification. PRACTITIONER POINTS: Fenton reaction was used to improve the adsorption ability of chitosan. The formed Fe3+ in Fenton reaction was utilized. HO· broke the hydrogen bonds and Fe3+ ions chelated with chitosan in modification. Cr(VI) could be adsorbed and reduced efficiently by Fenton modified chitosan. The Fenton modified chitosan provided a high concentration of active sites for Cr(VI) capture and detoxification.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics
2.
J Hazard Mater ; 378: 120782, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31226587

ABSTRACT

Cu+-based catalysts have great potential in Fenton reactions under neutral pH conditions. However, cuprous (Cu+) materials are instable in the aqueous environment. Herein, using the cheap precursors, a Cu+-graphitic carbon nitride complex with an efficient Fenton-like activity as well as relative stability was prepared. 99.2% removal of Rhodamine B with an initial concentration of 50 mg/L could be attained in 1 h. Several experimental techniques are employed to study the structure of this catalyst. Results show that after the addition of Cu, the graphitic carbon nitride (g-C3N4) network is partially destroyed and the reduced Cu is therefore firmly embedded in the fragmentary g-C3N4 sheet. The X-ray adsorption fine spectra illustrates the chemical state and the local structure of the bonded Cu. Due to the strong orbital hybridization, Cu+ could be stabilized through the coordination with pyridinic N. A two-coordinate structure with a bond length of 1.90 Šis confirmed and this structure is not changed even after the Fenton-like reaction. Singlet oxygen (1O2) and hydroxyl radicals (HO•) are produced by the rapid interaction of bonded Cu+ with H2O2 and the resulting Cu2+ can be easily reduced to its cuprous state due to its structure stability, leading to its high activity in the Fenton-like reaction.

3.
Environ Sci Pollut Res Int ; 25(34): 34190-34199, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30288673

ABSTRACT

Persulfates are recognized as promising oxidants and an alternative to Fenton reaction for water treatment. However, activation methods in hand restrict the practical application. Herein, we explore the possibility of Fe-N complexes being a catalyst for persulfate activation for the first time. The catalyst denoted as Fe-Im-SBA was synthesized from ferric chloride, imidazole, and SBA-15 at high temperature. The internal pore structure of Fe-Im-SBA was maintained well; Fe, N and C elements are evenly distributed on the catalyst. This catalyst presents an extraordinarily catalytic activity for Rh B removal by PMS activation with a removal rate of Rh B that reached up to 97.0% in the first 5 min. It also performed well in a wide pH range with complete removal of Rh B in pH ranged from 0.5 to 10, suggesting the stability of this catalyst in both acidic and alkaline conditions. It also showed high adaptability to degrade different kinds of pollutants, which could give an attractive advantage of Fe-Im-SBA for environmental implications. Through X-ray absorption spectroscopies analysis, it shows that the active sites of Fe-Im-SBA are composed of Fe-N4 sites and Fe2-N2 sites. 1O2 were proved to generate in the Fe-Im-SBA/PMS system and serve as the major ROS. Meanwhile, graphitic carbon can accelerate the transfer of electrons, which may also be the reason for its high catalytic performance.


Subject(s)
Peroxides/chemistry , Silicon Dioxide/chemistry , Singlet Oxygen/chemistry , Water Pollutants, Chemical/isolation & purification , Carbon/chemistry , Catalysis , Chlorides/chemistry , Ferric Compounds/chemistry , Graphite/chemistry , Imidazoles/chemistry , Iron/chemistry , Iron Compounds/chemistry , Nitrogen/chemistry , Oxidants/chemistry , Rhodamines/chemistry , Rhodamines/isolation & purification , Water Pollutants, Chemical/chemistry , Water Purification/methods , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...