Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Food Chem ; 453: 139631, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759444

ABSTRACT

To ensure food safety and environmental protection, it is crucial to rapidly identify and remove bisphenol A (BPA), a plasticizer commonly used in the inner lining of food containers and beverage packaging. Here, a photocatalytic fuel cell (PFC)-integrated self-powered photoelectrochemical (PEC) sensor is constructed. Unlike conventional single PEC or PFC sensors, this PFC-integrated PEC sensor relies on not only the difference in Fermi energy levels between photoanode and photocathode but also charge accumulation resulted from the oxidation of BPA by photogenerated holes. Consequently, this sensor achieved a remarkable maximum output power (Pmax) of 8.58 µW cm-2, as well as a high sensitivity, wide linear detection range (0.1-200 µM), low detection limit (0.05 µM), great stability, reproducibility, and real sample detection capability. This work integrates PFC and PEC technologies successfully for the rapid identification and efficient removal of BPA.


Subject(s)
Benzhydryl Compounds , Electrochemical Techniques , Phenols , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Phenols/chemistry , Electrochemical Techniques/instrumentation , Catalysis , Limit of Detection , Food Packaging/instrumentation , Food Contamination/analysis , Photochemical Processes , Oxidation-Reduction , Photolysis
2.
Talanta ; 273: 125867, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38447340

ABSTRACT

The traditional luminol electrochemiluminescence (ECL) sensing suffers from low signal response and instability issues. Here, an Au/ZnCuS double-enhanced g-C3N4-supported luminol ECL aptasensor is constructed for the sensitive detection of human mucin 1 (MUC1). In this platform, g-C3N4 of a large specific surface area is beneficial to load more luminol illuminants. Au nanoparticles promote the decomposition of H2O2 coreactants to generate more reactive oxygen (•OH and O2•-) intermediates, while ZnCuS can immobilize the aptamer and simultaneously catalyze H2O2 decomposition, realizing the double-wing signal amplification. Under optimal conditions, this sensor shows a good detection capability within 1.0 × 10-4-1.0 × 103 ng mL-1 and a low detection limit of 5.0 × 10-5 ng mL-1, as well as ideal stability, selectivity, and reproducibility. This double-enhanced aptasensor highlights a new signal-enhancement approach for early biomarker detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanocomposites , Humans , Luminol , Gold , Hydrogen Peroxide , Mucin-1 , Reproducibility of Results , Electrochemical Techniques , Luminescent Measurements , Limit of Detection
3.
J Am Chem Soc ; 146(3): 2072-2079, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38189785

ABSTRACT

Rapid visualization of latent fingerprints, preferably at their point of origin, is essential for effective crime scene evaluation. Here, we present a new class of green fluorescent protein chromophore-based fluorescent dyes (LFP-Yellow and LFP-Red) that can be used for real-time visualization of LFPs within 10 s. Compared with traditional chemical reagents for LFPs, these fluorescent dyes are completely water-soluble, exhibit low cytotoxicity, and are harmless to users. Level 1-3 details of the LFPs could be clearly revealed through "off-on" fluorescence signal readout. Additionally, the fluorescent dyes were constructed based on an imidazolinone core and so do not contain pyridine groups or metal ions, which ensures that the DNA is not contaminated during extraction and identification after the LFPs are treated with the dyes. Combined with our as-developed portable system for capturing LFPs, LFP-Yellow and LFP-Red enabled the rapid capture of LFPs. Therefore, these green fluorescent protein chromophore-based probes provide an approach for the rapid identification of individuals who were present at a crime scene.


Subject(s)
Fluorescent Dyes , Humans , Green Fluorescent Proteins , Fluorescence
4.
J Mater Chem B ; 12(3): 800-813, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38186029

ABSTRACT

A multifunctional nanoplatform is obtained by modifying copper hexacyanoferrate (Cu-HCF) nanozyme with hyaluronic acid (HA) and further loading platinum (Pt) nanoparticles. This Cu-HCF-HA@Pt platform shows peroxidase-like and glutathione oxidase-like dual-enzyme catalytic activities and photothermal properties, enabling synergistic chemodynamic and photothermal tumor therapy. HA binds to the CD44 receptor, which is highly expressed on the exterior surface of tumor cells, endowing the nanoplatform with tumor specificity. Cu-HCF-HA@Pt catalyzes the decomposition of H2O2 to produce abundant hydroxyl radicals within tumor cells, increasing intracellular oxidative stress levels and inducing tumor cell apoptosis. Meanwhile, Cu-HCF-HA@Pt catalyzes the conversion of intracellular reduced glutathione (GSH) to oxidized glutathione, resulting in GSH exhaustion. The conversion of CuII to CuI in Cu-HCF via a Fenton-like reaction can improve the peroxidase-like property of Cu-HCF-HA@Pt. After the probe is targeted to the tumor site, irradiation by an 808 nm near-infrared laser causes local heating and brings about photothermal tumor apoptosis when reaching 45 °C. The prepared Cu-HCF-HA@Pt combines nanozyme-catalyzed therapy with photothermal therapy to induce apoptosis in tumor cells.


Subject(s)
Copper , Ferrocyanides , Platinum , Copper/pharmacology , Platinum/pharmacology , Reactive Oxygen Species , Hydrogen Peroxide , Peroxidase , Peroxidases , Coloring Agents
5.
Analyst ; 149(4): 1318-1326, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38251970

ABSTRACT

Conventional single-signal or emerging sandwich-type double-signal electrochemiluminescence (ECL) immunosensors/aptasensors have offered accurate detection of small molecules, yet suffer from complicated setup, long processing time, and non-reusability. Here, we demonstrate a simplified molecularly imprinted ECL sensor based on Mn2SnO4 nanocubes. As an n-type semiconductor, Mn2SnO4 has numerous active sites that can capture electrons to accelerate chemical reactions, resulting in enhanced ECL activity and stability. For the first time, we verify a robust cathodic ECL emission of Mn2SnO4 luminophores in the presence of K2S2O8 coreactants. The proposed ECL sensor applies to the sensitive detection of ribavirin (RBV), endowing a wide linear range (1-2000 ng mL-1), low detection limit (0.85 ng mL-1, S/N = 3), high stability, specificity, and reproducibility, and the detection capability in real milk and chicken samples. This work highlights single semiconductor luminophore-driven molecularly imprinted ECL sensors, meeting the original aspiration of uncomplicated but high-performance sensing in food safety inspection.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Luminescent Measurements/methods , Ribavirin , Molecular Imprinting/methods , Limit of Detection , Biosensing Techniques/methods , Reproducibility of Results , Immunoassay/methods , Electrochemical Techniques/methods
6.
Biosens Bioelectron ; 247: 115914, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38091899

ABSTRACT

The conventional luminol-based electrochemiluminescence (ECL) biosensor suffers from hampered signal stability due to the self-decomposition of the H2O2 co-reactant. Here, we propose an N-doped TiO2/Ti3C2 heterojunction driven self-photocatalytic platform for ECL signal amplification and then combine it with molecular imprinting technology for sensitive and steady detection of dexamethasone (DXM). Unlike traditional cases involving specific catalysts or external electron injection, the initial luminescence of luminol in this new system is utilized as the excitation light of N-doped TiO2/Ti3C2 photocatalyst to promote the conversation of dissolved oxygen to H2O2, supplying more co-reactants to improve ECL of luminol in turn. Thanks to the heterojunction and self-photocatalytic cyclic amplification, this molecularly imprinted ECL sensor exhibits a wide linear range (1.0 × 10-6-1.0 × 101 µg mL-1) and a low detection limit, as well as excellent anti-interference capability, sensitivity, and stability. This work contributes to more reliable and steady detection of DXM and brings new insights into developing exogenous co-reactant-free self-enhancement ECL models for biosensor applications.


Subject(s)
Biosensing Techniques , Luminol , Hydrogen Peroxide , Titanium , Luminescent Measurements , Dexamethasone , Limit of Detection , Electrochemical Techniques
7.
ACS Appl Mater Interfaces ; 15(50): 58397-58405, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38053369

ABSTRACT

Florfenicol (FF) raises significant human health and environmental concerns due to its toxicity to the hematology system and the potential spread of antibiotic-resistant genes. Here, a highly sensitive molecularly imprinted photoelectrochemical (PEC) sensor, featuring an In2O3/Bi2S3 S-scheme heterojunction, is proposed to detect FF without an external voltage supply. Compared with conventional II-type heterojunctions, S-scheme heterojunctions efficiently promote carrier separation and enhance the redox capability of the photocatalytic system. This allows more dissolved O2 and H2O molecules to participate in the redox reaction, resulting in an amplified and stabilized photocurrent response. The electron transfer in the S-scheme heterojunction is confirmed via electron spin resonance (ESR). With the molecular imprinting technique, this PEC platform exhibits exceptional selectivity, wide linear range (1.0 × 10-4-1.0 × 104 ng mL-1), low detection limit (6.4 × 10-5 ng mL-1), and applicability in real milk and chicken samples. This work not only showcases a PEC platform for accurately and portably detecting drugs but also proposes a viable approach for designing S-scheme heterojunctions in sensing analysis.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Humans , Electrochemical Techniques/methods , Oxidation-Reduction , Electron Transport , Limit of Detection , Biosensing Techniques/methods
8.
ACS Sens ; 8(12): 4676-4685, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37973383

ABSTRACT

Conventional photoelectrochemical (PEC) biosensors suffer from the difficulty of visualizing rapid detection and limited accuracy due to a single-signal output. Here, we develop a PEC, electrochromic (EC), and spectral (ST) triple-mode platform for the sensitive visualized detection of nonylphenol (NP). First, the reasonably stepped Fermi energy level arrangement between the defective TiO2 anode and MoO3 cathode enables a remarkable photocurrent response (Mode 1). Then, MoO3 itself is a widely used EC candidate, which can react with free Li-ions to form a LixMoO3 intermediate, and its color will change from white to blue accordingly (Mode 2). More importantly, MoO3 is also a Li-ion host and the potential of LixMoO3 depends on the inserted Li-ion quantity deduced by spectral analysis on residual Li-ions in the electrolyte (Mode 3). The EC signal endows fast visual detection, and triple-mode cross-validation improves reliability and accuracy. As a result, this PEC-EC-ST triple-mode molecularly imprinted sensor has a wide linear range (1-5000 µg L-1), a low detection limit (0.18 µg L-1), selectivity, stability, reproducibility, and actual sample detection capability. This innovative multimode platform not only improves detection reliability but also broadens applications of electrochromic/energy storage materials in biosensors.


Subject(s)
Electrochemical Techniques , Reproducibility of Results , Limit of Detection , Ions
9.
Biosensors (Basel) ; 13(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37622886

ABSTRACT

Tumor-derived exosomes are considered as a potential marker in liquid biopsy for malignant tumor screening. The development of a sensitive, specific, rapid, and cost-effective detection strategy for tumor-derived exosomes is still a challenge. Herein, a visualized and easy detection method for exosomes was established based on a molybdenum disulfide nanoflower decorated iron organic framework (MoS2-MIL-101(Fe)) hybrid nanozyme-based CD63 aptamer sensor. The CD63 aptamer, which can specifically recognize and capture tumor-derived exosomes, enhanced the peroxidase activity of the hybrid nanozyme and helped to catalyze the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 system to generate a stronger colorimetric signal, with its surface modification on the hybrid nanozyme. With the existence of exosomes, CD63 aptamer recognized and adsorbed them on the surface of the nanozyme, which rescued the enhanced peroxidase activity of the aptamer-modified nanozyme, resulting in a deep-to-moderate color change in the TMB-H2O2 system where the change is visible and can be monitored with ultraviolet-visible spectroscopy. In the context of optimal circumstances, the linear range of this exosome detection method is measured to be 1.6 × 104 to 1.6 × 106 particles/µL with a limit of detection as 3.37 × 103 particles/µL. Generally, a simple and accessible approach to exosome detection is constructed, and a nanozyme-based colorimetric aptamer sensor is proposed, which sheds light on novel oncological biomarker measurements in the field of biosensors.


Subject(s)
Colorimetry , Exosomes , Hydrogen Peroxide , Molybdenum , Iron , Oligonucleotides , Peroxidases
10.
Talanta ; 259: 124499, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37058944

ABSTRACT

A dual-photoelectrode molecular imprinted photoelectrochemical (PEC) sensor is first built for the determination of sialic acid (SA) without additional energy supply. Specifically, WO3/Bi2S3 heterojunction behaves as a photoanode to provide amplified and stable photocurrent for the PEC sensing platform, which is attributed to the matched energy levels of WO3 and Bi2S3 promoting the electron transfer and improving photoelectric conversion properties. CuInS2 micro-flowers functionalized by molecularly imprinted polymers (MIPs) are served as photocathode to recognize SA, avoiding the deficiency of high production cost and poor stability from biological enzymes, aptamers, or antigen-antibodies. The inherent deviation between the Fermi level of the photoanode and the photocathode guarantees a spontaneous power supply for the PEC system. Benefiting from the photoanode and recognition elements, the as-fabricated PEC sensing platform has a strong anti-interference ability and high selectivity. Moreover, the PEC sensor displays a wide linear range of 1 nM-100 µM and a low detection limit of 7.1 × 10-10 M (S/N = 3) based on the relationship between photocurrent signal and SA concentration. Accordingly, this research provides a new and valuable approach to detecting various molecules.

11.
J Mater Chem B ; 11(12): 2754-2761, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36880334

ABSTRACT

A sensitive dual-signal electrochemiluminescence (ECL) immunosensor was proposed based on Ru(bpy)32+@HKUST-1/TPA and Ce2Sn2O7/K2S2O8 probes for detecting the NT-proBNP biomarker of heart failure. HKUST-1 with a high specific surface area facilitates the loading of more Ru(bpy)32+, effectively improving the anodic signal intensity, while the emerging Ce2Sn2O7 emitter displays a potential-matching cathodic emission with moderate intensity. Two ECL probes were characterized with field emission scanning electron microscopy, X-ray diffraction, XPS, FT-IR spectroscopy and UV-Vis diffuse reflectance spectroscopy. This dual-signal immunosensor has a wide linear range (5 × 10-4-1 × 104 ng mL-1) and a low quantitative detection limit, simultaneously showing high sensitivity, stability and reproducibility, as well as the detection capability of actual serum samples. This dual signal-calibrated immunoassay platform not only reduces the false positive rate of detection results but also provides a promising method for the early diagnosis of heart failure.


Subject(s)
Biosensing Techniques , Heart Failure , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Gold/chemistry , Biosensing Techniques/methods , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Immunoassay/methods , Biomarkers , Heart Failure/diagnosis
12.
J Mater Chem B ; 10(38): 7789-7796, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36069309

ABSTRACT

The rapid and reliable determination of thrombomodulin (TM) is of great significance for the diagnosis of disseminated intravascular coagulation, thrombosis and others. This work exhibits an electrochemiluminescent (ECL) sensor, which was prepared using Ru(bpy)32+ encapsulated by MIL-NH2-101(Al) nanocomposites for the sensitive detection of the new-thrombus marker thrombomodulin (TM) for the first time. Specifically, on one hand, with the advantages of high specific surface area, large hollow porous structure and favorable biocompatibility, MIL-NH2-101(Al) could load a large amount of luminescent Ru(bpy)32+ and thereby greatly enhance the ECL signal of the immunosensor. On the other hand, K2S2O8 is used as co-reactant to form a reduction-oxidation ECL system for cathodic ECL detection with strong anti-interference capacity. The experimental results show that the ECL signal intensity of the Ru(bpy)32+@MIL-NH2-101(Al)-based immunosensor decreased with the immunocapturing of TM, exhibiting a linear detection concentration ranging from 1 × 10-5 to 10 µg mL-1 and the limit of detection (LOD) of 8.2 × 10-6 µg mL-1 (S/N = 3). With its ideal stability, selectivity and reproducibility, the proposed ECL immunosensor can provide excellent aid and shows great promise for the detection of TM.


Subject(s)
Biosensing Techniques , Nanocomposites , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay/methods , Luminescent Measurements/methods , Reproducibility of Results , Thrombomodulin
13.
Chem Commun (Camb) ; 58(76): 10727-10730, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36069370

ABSTRACT

The occurrence of endoplasmic reticulum (ER) stress is the main cause of a variety of biological processes that are closely related to numerous diseases. The homeostasis of the ER microenvironment can be disrupted under ER stress. In this research, by linking a pentafluorophenyl to the green fluorescent protein chromophore, we have developed a new ER-targeting fluorescent probe (GE-Y) for measuring changes of intracellular ER viscosity caused by ER stress. Importantly, an increase in ER viscosity was observed using GE-Y in cells undergoing autophagy. As such, our research provides an ideal tool for studying ER stress and autophagy.


Subject(s)
Endoplasmic Reticulum , Fluorescent Dyes , Autophagy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/metabolism , Viscosity
14.
J Mater Chem B ; 10(11): 1821-1832, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35201249

ABSTRACT

Theranostic nanoplatforms for multimodal diagnosis and treatment of tumors are a current research hotspot in the field of nanomedicine. MOF-based theranostic nanoplatforms integrating drug delivery with magnetic resonance imaging (MRI) have attracted broad attention in cancer diagnosis and therapy. However, due to the poor chemical and colloidal stability of MOFs, as well as their poor biocompatibility, MOF-based theranostic nanoplatforms still face critical challenges in cancer treatment applications. Here, we devised a theranostic nanoplatform based on a bioinspired polydopamine (PDA)-functionalized metal-organic framework MIL-53(Fe) loaded with camptothecin (CPT) for MRI-guided pH-sensitive chemotherapy. On the nanoplatform, MIL-53(Fe) with good biodegradability has large pore volume and showed a high loading content of antitumor drug CPT (43.07%). To overcome the disadvantages of poor aqueous solubility of MIL-53(Fe) and easy photodecomposition of CPT, the CPT-loaded MIL-53(Fe) was coated with a layer of PDA, resulting in theranostic nanoparticles (PDA@CPT@MIL-53(Fe)). The theranostic nanoparticles exhibited excellent stability and pH-sensitive drug release. In vitro toxicity studies showed that the nanoparticles could be efficiently taken up by breast cancer MCF-7 cells and exhibited high cytotoxicity. In vivo antitumor assay showed the great antitumor effect of the theranostic nanoparticles by using a zebrafish xenograft model. Furthermore, the incorporation of Fe affords the PDA@CPT@MIL-53(Fe) with potential MRI; in vitro MRI showed the nanoparticles exhibit an excellent MRI performance with an r2 value up to 50 mM-1 s-1. These results suggest that CPT-loaded MIL-53(Fe) coated with PDA is a promising theranostic platform for MRI imaging and cancer therapy.


Subject(s)
Breast Neoplasms , Camptothecin , Iron , Animals , Female , Humans , Camptothecin/pharmacology , Camptothecin/therapeutic use , Hydrogen-Ion Concentration , Indoles , Iron/chemistry , Magnetic Resonance Imaging , Phototherapy , Polymers , Precision Medicine , Theranostic Nanomedicine , Zebrafish
15.
Mikrochim Acta ; 189(3): 90, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35129715

ABSTRACT

A novel molecular imprint photoelectrochemical (PEC) sensor has been prepared based on oriented single-crystalline TiO2 nanoarray (TNA) material for sensitive detection of diclofenac (DCF). The TNA obtained by the one-step hydrothermal method was characterized by XRD, SEM, and TEM. Polypyrrole film was formed on the TNA by electrochemical method, and DCF was imprinted on the polymer film as the template molecule. After the removal of DCF, there appeared lots of specific recognition sites that matched template molecules. The experimental results demonstrated that the constructed PEC sensor has good sensitivity and selectivity for the detection of DCF, which can be attributed to the high photoelectric conversion efficiency of TNA and the high selectivity of molecular imprinting technology. The fabricated PEC sensor showed a wide detection range (0.05-1000 µM) and a low limit of detection (0.0034 µM) for DCF, as well as good repeatability and stability. The proposed PEC sensor provided an effective strategy in the monitoring of environmental pollutants.

16.
Biosens Bioelectron ; 204: 114056, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35172245

ABSTRACT

Quantitative determination of sarcosine (SAR) in biological liquids is of great importance, as SAR has been recently suggested as a promising biomarker for prostate cancer diagnostics. Herein, a self-powered photoelectrochemical (PEC) molecular imprinted sensor integrated with photoanode (Au@TiO2 nanorods) and photocathode (Cu2O) is proposed for the first time towards the specific and sensitive detection of SAR. With the benefits of strong photocurrent driving force attributed to a large inherent deviation between the Fermi levels of photoanode and photocathode in this system, the photogenerated electrons of Au@TiO2 can rapidly transferred along the outer circuit and attracted by the holes in the valence band of the photocathode, forming a self-powered PEC system and improve the photocurrent of the cathode. Under the optimal conditions, the constructed cathode imprinted sensor has a linear range of 10 nM - 10 µM, and the limitation of detection is 0.19 nM. This work proved that the PEC sensing platform has great potential in the field of miniaturized biosensing without external power supply.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Nanotubes , Electrochemical Techniques , Electrodes , Humans , Male , Sarcosine , Titanium
17.
Biosens Bioelectron ; 201: 113962, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35021132

ABSTRACT

A novel potential-resolved molecularly imprinted electrochemical luminescence (ECL) immunosensor has been developed for the first time for the dual sensitive detection of markers of acute myocardial infarction (AMI): cardiac troponin I (cTnI) and myoglobin (Mb). In this work, cost-effective and robust molecularly imprinted polymer (MIP) as biomimetic antibody was used to construct the immunosensors through electropolymerization and elution to form polydopamine (PDA)-MIP modified electrode. In the presence of AMI biomarkers, two ECL probes including Ru(bpy)32+@ MOCs and MoS2 QDs functionalized by cTnI antibody and Mb aptamer could be specifically captured respectively. And two potential distinct ECL signals will be generated in one potential scan. The intensity of ECL reflects the concentrations of cTnI and Mb. The two ECL probes were characterized with field emission scanning electron microscopy, X-ray diffraction, FT-IR spectrum and UV-Vis diffuse reflectance spectroscopy. The prepared sensor exhibited a wide linear range (0.05-104 ng/mL) and a low detection limit (0.0184 ng/mL for cTnI and 0.0492 ng/mL for Mb). Additionally, the MIP-ECL sensor displayed excellent anti-interference, sensitivity and stability to detect cTnI and Mb. Therefore, it will be conducive to accelerate more precise and credible early diagnosis for AMI.


Subject(s)
Biosensing Techniques , Myocardial Infarction , Biomarkers , Electrochemical Techniques , Humans , Immunoassay , Limit of Detection , Luminescent Measurements , Myocardial Infarction/diagnosis , Spectroscopy, Fourier Transform Infrared
18.
ACS Nano ; 15(11): 17842-17853, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34761898

ABSTRACT

Diabetic wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatments have unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the penetration depth. Herein, we develop a magnesium organic framework-based microneedle patch (denoted as MN-MOF-GO-Ag) that can realize transdermal delivery and combination therapy for diabetic wound healing. Multifunctional magnesium organic frameworks (Mg-MOFs) are mixed with poly(γ-glutamic acid) (γ-PGA) hydrogel and loaded into the tips of MN-MOF-GO-Ag, which slowly releases Mg2+ and gallic acid in the deep layer of the dermis. The released Mg2+ induces cell migration and endothelial tubulogenesis, while gallic acid, a reactive oxygen species-scavenger, promotes antioxidation. Besides, the backing layer of MN-MOF-GO-Ag is made of γ-PGA hydrogel and graphene oxide-silver nanocomposites (GO-Ag) which further enables excellent antibacterial effects for accelerating wound healing. The therapeutic effects of MN-MOF-GO-Ag on wound healing are demonstrated with the full-thickness cutaneous wounds of a diabetic mouse model. The significant improvement of wound healing is achieved for mice treated with MN-MOF-GO-Ag.


Subject(s)
Diabetes Mellitus , Magnesium , Mice , Animals , Wound Healing , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Diabetes Mellitus/drug therapy , Gallic Acid
19.
Biosens Bioelectron ; 194: 113591, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34500228

ABSTRACT

Based on two different types of luminescence systems (Ru﹡(bpy)32+/TPA and SnO2 NFs/K2S2O8), a new type of electrochemiluminescence (ECL) immunosensor was prepared, which realized the detection of acute myocardial infarction biomarker cTnI. In this strategy, Ru(bpy)32+, above all, was immobilized on the NH2-MIL-125 as a capture probe. Subsequently, cTnI and SnO2 NFs was bonded to the electrode surface through the interaction between antigen and antibody in turn. During this process, Ru(bpy)32+ and the co-reactant TPA first showed strong and stable ECL emission. As the concentration of cTnI in the test system increased, the signal of SnO2 NFs and the co-reactant K2S2O8 gradually enhanced, indicating self-calibrating mechanism of the assay system. Therefore, the "off-on" ECL immunosensor can be detected in the linear range of 10-5 -104 ng/mL, and the limit of detection (LOD) is 3.39 fg/mL (S/N = 3), respectively. The dual-signal electrochemiluminescence method has the advantages of low cost, simple analysis process, wide detection range and good selectivity, providing a promising analysis protocol for clinical applications.


Subject(s)
Biosensing Techniques , Myocardial Infarction , Biomarkers , Humans , Immunoassay , Luminescent Measurements , Myocardial Infarction/diagnosis
20.
Biomater Sci ; 9(1): 148-156, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32936130

ABSTRACT

Ultrathin transition metal dichalcogenides (TMDs) seem to have a promising future in the field of theranostic agents due to their excellent near-infrared light absorption capacity and large specific surface area. Plenty of previous studies focused on the therapeutic effects of the materials, but were less concerned with the detailed studies of biocompatibility for clinical transformation. In this work, ultrathin WS2 nanosheets coated with bovine serum protein (BSA) (WS2@BSA NSs) were selected as experimental subjects with favorable biocompatibility to explore their potential as a theranostic agent. Firstly, ultrathin WS2 nanosheets were prepared by ultrasound-assisted exfoliation using n-methyl pyrrolidone (NMP) as the liquid phase, followed by coating with bovine serum protein. The physical and chemical properties of WS2@BSA NSs were investigated. Secondly, the biocompatibility experiments that are most relevant to clinical transformation were divided into cell level experiments and in vivo experiments with zebrafish as the model organism. Finally, to explore further applications for the diagnosis and treatment of tumors, the in vitro photothermal effect and the X-ray computed tomography (CT) imaging capability of WS2@BSA NSs were investigated. The obtained results were promising in terms of biocompatibility and theranostics, which suggested the potential of WS2@BSA NSs for use as a multifunctional theranostic agent in clinics.


Subject(s)
Precision Medicine , Zebrafish , Animals , Cattle , Cell Line, Tumor , Theranostic Nanomedicine , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...