Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4415, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789444

ABSTRACT

Organic room-temperature phosphorescence materials have attracted extensive attention, but their development is limited by the stability and processibility. Herein, based on the on-line derivatization strategy, we report the urea-formaldehyde room-temperature phosphorescence materials which are constructed by polycondensation of aromatic diamines with urea and formaldehyde. Excitingly, urea-formaldehyde room-temperature phosphorescence materials achieve phosphor lifetime up to 3326 ms. There may be two ways to enhance phosphorescence performance, one is that the polycondensation of aromatic diamine with urea and formaldehyde promotes spin-orbit coupling, and another is that the imidazole derivatives derived from the condensation of aromatic o-diamine with formaldehyde maintains low levels of energy level difference and spin-orbit coupling, thus achieving ultra-long afterglow. Surprisingly, urea-formaldehyde room-temperature phosphorescence materials exhibit tunable phosphorescence emission in electrostatic field. Accordingly, 1,4-phenylenediamine, urea, and formaldehyde are copolymerized and self-assembled into phosphorescence microspheres with different electrostatic potential strengths. By mixing 1 wt% 1,4-phenylenediamine polycondensation microspheres with 1,4-phenylenediamine free microspheres, phosphor lifetime of the composite could be regulated from 27 ms to 123 ms. Moreover, vulcanization process enables precise shaping of urea-formaldehyde room-temperature phosphorescence materials. This work not only demonstrates that urea-formaldehyde room-temperature phosphorescence materials are promising candidates for organic phosphors, but also exhibits the phenomenon of electrostatically regulated phosphorescence.

2.
Nat Commun ; 14(1): 4164, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443149

ABSTRACT

Although room temperature phosphorescence (RTP) materials have been widely investigated, it is still a great challenge to improve the performance of RTP materials by promoting triplet exciton generation and stabilization. In this study, an in-situ derivation strategy was proposed to construct efficient RTP materials by in-situ deriving guest molecules and forming a rigid matrix during co-pyrolysis of guest molecules and urea. Characterizations and theoretical calculations revealed that the generated derivatives were beneficial for promoting intersystem crossing (ISC) to produce more triplet excitons, while rigid matrix could effectively suppress the non-radiative transition of triplet excitons. Thus, the in-situ derivation strategy was concluded to simultaneously promote the generation and stabilization of triplet excitons. With this method, the ultralong lifetime of RTP materials could reach up to 5.33 s and polychromatic RTP materials were easily achieved. Moreover, the potential applications of the RTP materials in reprocessing or editable anti-counterfeiting were successfully demonstrated.


Subject(s)
Pyrolysis , Radiation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...