Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Cardiovasc Transl Res ; 14(6): 1117-1124, 2021 12.
Article in English | MEDLINE | ID: mdl-33709384

ABSTRACT

Hypertension is the most prevalent chronic disease and a risk factor for various diseases. Although its mechanisms and therapies are constantly being updated and developed, they are still not fully clarified. In recent years, novel gut microbiota and its metabolites have attracted widespread attention. It is strongly linked with physiological and pathological systems, especially TMA and TMAO. TMA is formed by intestinal microbial metabolism of choline and L-carnitine and converted into TMAO by FMO3. This paper collected and collated the latest researches and mainly discussed the following four parts. It introduced gut microbiota; provided a focus on TMA, TMA-producing bacteria, and TMAO; summarized the alternations in hypertensive patients and animals; discussed the mechanisms of TMAO with two respects; and summarized the regulatory factors may be as new interventions and therapies of hypertension. And, more relevant studies are still prospected to be accomplished between hypertension and TMA/TMAO for further clinical services.


Subject(s)
Gastrointestinal Microbiome/physiology , Hypertension/drug therapy , Hypertension/metabolism , Methylamines/metabolism , Animals , Carnitine/metabolism , Choline/metabolism , Gastrointestinal Microbiome/immunology , Glucose/metabolism , Humans , Inflammation/metabolism , Lipid Metabolism
2.
Biomed Res Int ; 2019: 7159592, 2019.
Article in English | MEDLINE | ID: mdl-31355277

ABSTRACT

Cardiac remodeling is a self-regulatory response of the myocardium and vasculature under the stressful condition. Cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and cardiac fibroblasts (CFs) are all involved in this process, characterized by change of morphological structures and mechanical/chemical activities as well as metabolic patterns. Despite current development of consciousness, the control of cardiac remodeling remains unsatisfactory, and to further explore the underlying mechanism and seek the optimal therapeutic targets is still the urgent need in clinical practice. It is now emerging that long noncoding RNAs (lncRNAs) play key regulatory roles in these adverse responses: lncRNA TUG1, AK098656, TRPV1, GAS5, Giver, and Lnc-Ang362 have been indicated in hypertension-related vascular remodeling, H19, TUG1, UCA1, MEG3, APPAT, and lincRNA-p21 in atherosclerosis (AS), and HIF1A-AS1 and Lnc-HLTF-5 in aortic aneurysm (AA). In addition, Neat1, AK139328, APF, CAIF, AK088388, CARL, MALAT1, HOTAIR, XIST, and NRF are involved in postischemia myocardial remodeling, while Mhrt, Chast, CHRF, ROR, H19, Plscr4, and MIAT are involved in myocardial hypertrophy, and MALAT1, wisper, MEG3, and H19 are involved in extracellular matrix (ECM) reconstitution. Signaling to specific miRNAs by acting as endogenous sponge (ceRNA) was the main form that regulates the target gene expression during cardiac remodeling. This review will underline the updates of lncRNAs and lncRNA-miRNA interactions in maladaptive remodeling and also cast light on their potential roles as therapeutic targets, hoping to provide supportive background for following research.


Subject(s)
Extracellular Matrix/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Ventricular Remodeling , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Extracellular Matrix/pathology , Humans , Myocardium/pathology , Myocytes, Cardiac/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...