Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(1): 119-125, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35224933

ABSTRACT

Cry protein residue and accumulation in soil are two important components of the environmental safety assessment for the plantation of transgenic Bt crops. Several Bt rice lines with good commercial prospects have been developed in China, but it is unclear whether Cry proteins will accumulate in soils after multiple years of Bt rice cultivation. We planted the transgenic Bt rice lines cry1Ab/1Ac Minghui 63 (Huahui No. 1) and cry2A Minghui 63 for 9 years in the same field. The Cry proteins in the rhizosphere soil were estimated with enzyme linked immunosorbent assay (ELISA) at tillering stage and on the 60th day after harvest in each year. The Cry protein residues during the seedling, flowering and ripening stages were estimated in the first year (2012) and the last year (2020) of the experiment. In 2012, the concentration of Cry1Ab/1Ac in the rhizosphere soil of Huahui No. 1 was 1.25, 1.77, 1.97, 1.71 and 0.30 ng·g-1 at the seedling, tillering, flowering, ripening stages and on the 60th day after harvest, respectively. In 2020, the corresponding values were 1.30, 1.69, 2.03, 1.77, and 0.43 ng·g-1. In 2012, the concentration of Cry2A in rhizosphere soil of line cry2A Minghui 63 was 0.91, 1.52, 1.53, 1.37, and 0.12 ng·g-1 at the seedling, tillering, flowering, ripening stages and on the 60th day after harvest, respectively. The corresponding values in 2020 were 0.95, 1.43, 1.61, 1.40, and 0.15 ng·g-1. Results of multi-way ANOVA showed that the effect of year was not significant, but the effects of rice variety and growth stage were significant. Our results indicated that Cry proteins could be detected in rhizosphere soil during the growth stages of Bt rice, but would be degraded by 60 d after harvest, and that the concentrations of Cry proteins in the soil would not accumulate across multiple planting years.


Subject(s)
Bacillus thuringiensis Toxins/analysis , Endotoxins/analysis , Hemolysin Proteins/analysis , Oryza , Soil/chemistry , Oryza/genetics , Plants, Genetically Modified , Rhizosphere
2.
Phytopathology ; 106(8): 937-44, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27070425

ABSTRACT

Papaya ringspot virus (PRSV) severely affects the global papaya industry. Transgenic papaya has been proven to have effective resistance to PRSV isolates from Hawaii, Thailand, Taiwan, and other countries. However, those transgenic cultivars failed to show resistance to Hainan Island isolates. Some 76 PRSV samples, representative of all traditional papaya planting areas across five cities (Wen Chang, n = 13; Cheng Mai, n = 14; Chang Jiang, n = 11; Le Dong, n = 25; and San Ya, n = 13) within Hainan Province, were investigated. Results revealed three genetic diversity groups (Hainan I, II, and III) that correlated with geographical distribution. Frequent mutations among PRSV isolates from Hainan were also observed. The high genetic divergence in PRSV isolates from Hainan is likely to be the cause of the failure of genetically modified papaya that targets sequence-specific virus.


Subject(s)
Carica/virology , Genetic Variation , Plant Diseases/virology , Potyvirus/genetics , China , Phylogeny
3.
J Proteomics Bioinform ; 8: 98-107, 2015.
Article in English | MEDLINE | ID: mdl-26500417

ABSTRACT

Mass spectrometry (MS) has been widely used for specific, sensitive and rapid analysis of proteins and has shown a high potential for bacterial identification and characterization. Type strains of four species of rhizobia and Escherichia coli DH5α were employed as reference bacteria to optimize various parameters for identification and classification of species of rhizobia by matrix-assisted laser desorption/ionization time-of-flight MS (MALDI TOF MS). The parameters optimized included culture medium states (liquid or solid), bacterial growth phases, colony storage temperature and duration, and protein data processing to enhance the bacterial identification resolution, accuracy and reliability. The medium state had little effects on the mass spectra of protein profiles. A suitable sampling time was between the exponential phase and the stationary phase. Consistent protein mass spectral profiles were observed for E. coli colonies pre-grown for 14 days and rhizobia for 21 days at 4°C or 21°C. A dendrogram of 75 rhizobial strains of 4 genera was constructed based on MALDI TOF mass spectra and the topological patterns agreed well with those in the 16S rDNA phylogenetic tree. The potential of developing a mass spectral database for all rhizobia species was assessed with blind samples. The entire process from sample preparation to accurate identification and classification of species required approximately one hour.

4.
Toxicol Rep ; 2: 1233-1245, 2015.
Article in English | MEDLINE | ID: mdl-28962466

ABSTRACT

The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.). In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589) adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

5.
Gene ; 557(2): 215-21, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25528266

ABSTRACT

Beet armyworm, Spodoptera exigua, is a major pest of cotton around the world. With the increase of resistance to Bacillus thuringiensis (Bt) toxin in transgenic cotton plants, there is a need to develop an alternative control approach that can be used in combination with Bt transgenic crops as part of resistance management strategies. MicroRNAs (miRNAs), a non-coding small RNA family (18-25 nt), play crucial roles in various biological processes and over-expression of miRNAs has been shown to interfere with the normal development of insects. In this study, we identified 127 conserved miRNAs in S. exigua by using small RNA deep sequencing technology. From this, we tested the effects of 11 miRNAs on larval development. We found three miRNAs, Sex-miR-10-1a, Sex-miR-4924, and Sex-miR-9, to be differentially expressed during larval stages of S. exigua. Oral feeding experiments using synthetic miRNA mimics of Sex-miR-10-1a, Sex-miR-4924, and Sex-miR-9 resulted in suppressed growth of S. exigua and mortality. Over-expression of Sex-miR-4924 caused a significant reduction in the expression level of chitinase 1 and caused abortive molting in the insects. Therefore, we demonstrated a novel approach of using miRNA mimics to control S. exigua development.


Subject(s)
MicroRNAs/genetics , Spodoptera/genetics , Animals , Base Sequence , Chitinases/genetics , Chitinases/metabolism , Conserved Sequence , Gene Expression , Genes, Insect , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/enzymology , Larva/genetics , Larva/growth & development , Sequence Analysis, RNA , Spodoptera/enzymology , Spodoptera/growth & development
6.
Int J Syst Evol Microbiol ; 59(Pt 12): 3051-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19643889

ABSTRACT

Isolated from root nodules of Trigonella archiducis-nicolai (Sirj.) Vassilcz. grown in Tibet, China, cells of the bacterial strains CCBAU 85039(T) and CCBAU 85027 were Gram-negative, aerobic, motile, non-spore-forming rods that formed colonies that were semi-translucent and opalescent on yeast extract-mannitol agar. In numerical taxonomy, SDS-PAGE analysis of whole-cell proteins and DNA-DNA hybridization, the two strains were very similar and were different from reference strains of defined Rhizobium species. In the phylogeny based on 16S rRNA gene sequences, they were most similar to Rhizobium etli CFN 42(T) (98.2 % similarity) and R. leguminosarum USDA 2370(T) (97.6 %). Sequence analyses of the housekeeping genes recA, atpD and glnII and the 16S-23S rRNA intergenic spacer, phenotypic characteristics and cellular fatty acid profiles strongly suggested that these two strains represented a novel species within Rhizobium. Cross-nodulation tests and sequencing of nifH and nodA genes showed that these two strains were symbiotic bacteria that nodulated Trigonella archiducis-nicolai, Medicago lupulina, Medicago sativa, Melilotus officinalis, Phaseolus vulgaris and Trigonella foenum-graecum. Based on the results, the novel species Rhizobium tibeticum sp. nov. is described to accommodate the two strains. The type strain is CCBAU 85039(T) (=LMG 24453(T) =CGMCC 1.7071(T)). The DNA G+C content of this strain is 59.7 mol% (T(m)).


Subject(s)
Rhizobium/classification , Rhizobium/isolation & purification , Symbiosis , Trigonella/microbiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/physiology , Root Nodules, Plant/microbiology , Root Nodules, Plant/physiology , Tibet , Trigonella/physiology
7.
Microb Ecol ; 57(1): 69-81, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18568286

ABSTRACT

A total of 128 bacterial test strains originated from Astragalus, Caragana, Gueldenstaedtia, Medicago, Melilotus, Oxytropis, Trifolium, and Vicia grown in Tibet were characterized phenotypically and genomically. Based upon the consensus of grouping results, they were identified as 16 putative species. Twenty-five test strains belonging to seven putative species of Agrobacterium, Bradyrhizobium, and Rhizobium might be nonsymbiotic bacteria and the remaining 103 test strains were symbiotic bacteria belonging to Mesorhizobium, Rhizobium, and Sinorhizobium meliloti. Although no novel taxon was detected in the symbiotic bacteria, several characters including the alkaliphilic psychrotolerance revealed that the Tibetan rhizobia could be ecotypes adapted to the local conditions. The results also demonstrated that frequent lateral transfer of symbiotic genes might have happened in the Tibetan rhizobia since nodC genes similar to that of S. meliloti were found in several Rhizobium test strains and all the Mesorhizobium species had very similar nodC genes despite their genomic background. All of these findings demonstrated that the Tibetan rhizobia were an important resource for further studies on rhizobial ecology and application.


Subject(s)
Alphaproteobacteria/classification , Alphaproteobacteria/isolation & purification , Fabaceae/microbiology , Plant Roots/microbiology , Acyltransferases/genetics , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , DNA, Ribosomal Spacer/analysis , Fabaceae/classification , N-Acetylglucosaminyltransferases/genetics , Nitrogen Fixation , Phylogeny , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Restriction Mapping , Rhizobiaceae/classification , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Rhizobiaceae/metabolism , Symbiosis/genetics , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...