Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Biol ; 28(12): e13347, 2023 12.
Article in English | MEDLINE | ID: mdl-38017637

ABSTRACT

Previous studies demonstrated that reward circuit plays an important role in smoking. The differences of functional and structural connectivity were found among several brain regions such as thalamus and frontal lobe. However, few studies focused on functional connectivity (FC) in whole-brain voxel level of young smokers. In this study, intrinsic connectivity contrast (ICC) was used to perform voxel-based whole-brain analyses in 55 young smokers and 55 matched non-smokers to identify brain regions with significant group differences. ICC results showed that the connectivity of young smokers in medial frontal cortex (MedFC), supramarginal gyrus anterior division left (L_aSMG), central opercular cortex left (L_CO) and middle frontal gyrus left (L_MidFG) showed a significantly lower trend compared with the non-smokers. The seed-based FC analysis about MedFC indicated that young smokers showed reduced connectivity between the MedFC and left hippocampus, left amygdala compared to non-smokers. Correlation analysis showed that the ICC of MedFC in young smokers was significantly negatively correlated with Fagerstrom test for nicotine dependence (FTND) and Questionnaire on Smoking Urges (QSU). The FC between the MedFC and left hippocampus, left amygdala was significantly negatively correlated with Pack_years. The mediation analysis indicated that ICC of MedFC completely mediated FTND and QSU of young smokers. The results suggest that nicotine accumulation may affect the communication of the frontal lobe with the whole brain to some extent, leading to changes in smoking cravings. The above research also provides in-depth insights into the mechanism of adolescent smoking addiction and related intervention treatment.


Subject(s)
Brain Mapping , Smokers , Adolescent , Humans , Magnetic Resonance Imaging , Cerebral Cortex , Smoking , Brain/diagnostic imaging
2.
Addict Biol ; 27(2): e13132, 2022 03.
Article in English | MEDLINE | ID: mdl-35229948

ABSTRACT

Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in smokers. Exposure to nicotine disrupts neurodevelopment during adolescence, possibly by disrupting the trophic effects of acetylcholine. However, little is known about the diffusion parameters of specific fibre bundles at multiple locations in young smokers. Thirty-seven young smokers and 29 age-, education- and gender-matched healthy non-smokers participated in this study. Automated Fibre Quantification (AFQ) was employed to investigate the WM microstructure in young smokers by integrating multiple indices. Diffusion parameters, that is, fractional anisotropy (FA), axial diffusion (AD), radial diffusion (RD) and mean diffusion (MD), were calculated at 100 points along the length of 18 major brain tracts. The relationships between neuroimaging differences and smoking behaviours were explored, including Fagerström Test of Nicotine Dependence (FTND) and pack-years. Compared with non-smokers, young smokers showed significantly increased FA, AD and decreased RD in the left uncinate fasciculus (UF) and right thalamic radiation (TR), increased AD, RD and decreased FA in the right arcuate fasciculus (Arc). Correlation analyses revealed that FA values of the left UF and RD values of the right Arc were negatively correlated with FTND score in smokers and FA values of the right Arc were positively correlated with FTND scores. Positive correlation was observed between AD values of the left UF and pack-years in smokers. The findings enhanced our understanding of the potential effect of adolescent smoking on WM microstructure.


Subject(s)
White Matter , Adolescent , Anisotropy , Brain , Diffusion Tensor Imaging/methods , Humans , Nerve Net , Smokers , Uncinate Fasciculus , White Matter/diagnostic imaging
3.
Neurosci Lett ; 761: 136120, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34280504

ABSTRACT

Exposure to nicotine during adolescence may cause neurophysiological changes and increase the risks of developing nicotine dependence; it can even lead to lifelong smoking. The intake of nicotine may also lead to abnormal patterns of oscillatory brain activity and inhibition control deficits. However, little is known about the specific relationship between oscillatory brain activity during the resting state and inhibition control capacity in young smokers. In the present study, we acquired resting-state electroencephalography (EEG) data from thirty-four young smokers and 39 age-matched non-smoking controls. Inhibition control performance was measured by a Go/NoGo task. Compared with non-smoking controls, we detected reduced low-frequency delta band activity in the frontal, central and posterior cortices of young smokers. Furthermore, young smokers committed more errors in response to infrequent NoGo trials. Notably, we demonstrated that delta absolute power in the frontal region was negatively correlated with NoGo errors and that alpha power in the central region was positively correlated with NoGo errors in non-smoking controls but not in young smokers. These findings may suggest that these inhibitory control processes were associated with alterations in oscillatory brain activity during the resting state. Our findings suggest that alterations of power spectra in delta bands may act as a useful biomarker of inhibitory control performance and provide a scientific basis for the diagnosis and treatment of nicotine addiction in adolescents.


Subject(s)
Brain Waves , Neural Inhibition , Tobacco Smoking/physiopathology , Humans , Male , Sensorimotor Cortex/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...