Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 339: 122255, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823921

ABSTRACT

Mixed infectious vaginitis poses a serious threat to female reproductive health due to complex pathogenic factors, a long course and easy recurrence. Currently, antibiotic-based treatment methods are facing a crisis of drug resistance and secondary dysbiosis. Exploring effective drugs for the treatment of mixed vaginitis from Paeonia suffruticosa Andr., a natural traditional Chinese medicine with a long history of medicinal use, is a feasible treatment strategy. P. suffruticosa Andr. leaf extract (PLE) has significant anti-bacterial effects due to its rich content of polyphenols and flavonoids. The polyphenols in peony leaves have the potential to make carboxymethyl chitosan form in situ gel. In the current study, PLE and carboxymethyl chitosan were combined to develop another type of natural anti-bacterial anti-oxidant hydrogel for the treatment of mixed infectious vaginitis. Through a series of characterisations, CP had a three-dimensional network porous structure with good mechanical properties, high water absorption, long retention and a slow-release drug effect. The mixed infectious vaginitis mouse model induced by a mixture of pathogenic bacteria was used to investigate the therapeutic effects of CP in vivo. The appearance of the vagina, H&E colouring of the tissue and inflammatory factors (TNF-α, IL-6) confirm the good anti-vaginal effect of CP. Therefore, CP was expected to become an ideal effective strategy to improve mixed infection vaginitis due to its excellent hydrogel performance and remarkable ability to regulate flora.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Paeonia , Plant Extracts , Plant Leaves , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Female , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Plant Leaves/chemistry , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Paeonia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , Antioxidants/pharmacology , Antioxidants/chemistry
2.
Int J Biol Macromol ; 240: 124487, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37068538

ABSTRACT

Conventional wound dressings fail to satisfy the requirements and needs of wounds in various stages. It is challenging to develop a multifunctional dressing that is hemostatic, antibacterial, anti-inflammatory, and promotes wound healing. Therefore, this study aimed to develop a multifunctional sponge dressing for the full-stage wound healing based on copper and two natural products, Bletilla striata polysaccharide (BSP) and peony leaf extract (PLE). The developed BSP-Cu-PLE sponges were characterized by SEM, XRD, FTIR, and XPS to assess micromorphology and elemental composition. Their properties and bioactivities were also verified by the further experiments, whereby the findings revealed that the BSP-Cu-PLE sponges had improved water absorption and porosity while exhibiting excellent antioxidative, biocompatible, and biodegradable properties. Moreover, the antibacterial test revealed that BSP-Cu-PLE sponges had superior antibacterial activity against S. aureus and E. coli. Furthermore, the hemostatic activity of BSP-Cu-PLE sponges was significantly enhanced in a rat liver trauma model. Most notably, further studies have demonstrated that the BSP-Cu-PLE sponges could significantly (p < 0.05) accelerate the healing process of skin wounds by stimulating collagen deposition, promoting angiogenesis, and decreasing inflammatory cells. In summary, the BSP-Cu-PLE sponges could provide a new strategy for application in clinical setting for full-stage wound healing.


Subject(s)
Hemostatics , Paeonia , Rats , Animals , Copper , Escherichia coli , Staphylococcus aureus , Wound Healing , Polysaccharides/pharmacology , Hemostatics/pharmacology , Bandages , Anti-Bacterial Agents/pharmacology
3.
Int J Biol Macromol ; 222(Pt B): 2200-2211, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36208813

ABSTRACT

Considering the problem of food perishability and the environmental pollution of plastic packaging, the natural active packaging prepared by incorporating plant leaf (e.g. peony leaf) extract into biodegradable food packaging materials may be a key to addressing these issues. In the study, a novel green bioactive composite film (CS-PLE) with antioxidant and antibacterial propertiese was developed by blending peony leaf extract (PLE) into chitosan (CS) film through the solution casting method. The physical properties and biological activities of a series of films, including CS film and CS-PLEs incorporated with different concentrations of PLE, were studied by appropriate experimental protocols. The results demonstrated that addition of PLE improved thermal stability, the barrier performance of UV-A and total phenolic content of CS film, and the antioxidant activities of CS-PLEs increased by 60.6 % ~ 73.2 % with the appending proportion of PLE from 0.1 wt% ~ 0.7 wt% compared to CS film. Furthermore, CS-PLEs had better inhibiting effect on bacteria. Notably, CS-PLE (0.7 wt%) wrapping apples showed the least degree of browning among all the groups. Hence, the study of CS-PLEs can provide a new strategy for the preparation of food packaging materials that are green alternatives and reduce environmental pollution.


Subject(s)
Chitosan , Paeonia , Food Packaging/methods , Antioxidants/pharmacology , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...