Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 414: 125567, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34030414

ABSTRACT

The presence of ciprofloxacin (CIP) in natural water may cause potential threats to the environment. Adsorption is a convenient and efficient method to remove CIP from aqueous solution. Bayberry tannin (BT), a natural polyphenol, has been utilized in the synthesis of tannin foam (TF) due to its abundant polyphenolic hydroxyls to chelate with metal ions. The obtained TF was subsequently immobilized with Fe3+ via a facile chelative adsorption to fabricate functional tannin foam (TF-Fe), which was highly porous, with a porosity of 78.93%. The Fe species in the TF-Fe featured good dispersity, which were active for chelative adsorption of CIP. The adsorption of CIP on the TF-Fe was a pH-dependent process. At the optimized pH of 7.0, the TF-Fe provided the adsorption capacity of 91.8 mg g-1. When applied in removal of CIP at the low concentration of 2.0 µg mL-1, a high removal efficiency of 96.60% was still obtained, which was superior to commercial activated carbon (28.78%). The adsorption kinetics were well fitted by the pseudo-second-order rate model while the adsorption isotherms were well described by the Langmuir model. The TF-Fe was capable of recycling, which still maintained a high removal efficiency of 92.25% in the 5th cycle.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Ciprofloxacin , Hydrogen-Ion Concentration , Kinetics , Tannins , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL