Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
RSC Adv ; 11(43): 26493-26501, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35479983

ABSTRACT

Lateral-flow analysis (LFA) is a convenient, low-cost, and rapid detection method, which has been widely used for screening of diseases. However, sensitivity enhancement in LFA is still a focus in this field and remains challenging. Herein, we propose an electrospinning coating method to modify the conventional nitrocellulose (NC) membrane and optimize the liquid flow rate for enhancing the sensitivity of the NC based LFA strips in the detection of human chorionic gonadotropin (HCG) and luteinizing hormone (LH). It can be seen that coating the NC membrane with nitrocellulose fibers could obtain a NC based strip with HCG and LH detection limits of 0.22 and 0.36 mIU mL-1 respectively, and a quantitative linear range of 0.5-500 mIU mL-1. The results show that electrospinning is effective in modifying conventional NC membranes for LFA applications.

2.
Mikrochim Acta ; 187(12): 644, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33155110

ABSTRACT

The main goal of this work is to develop an economical, portable, disposable, and reliable point of care paper biosensor based on visualization, which can be used to detect viruses, bacteria, and proteins. However, the sensitivity of immunochromatography test (ICT) strips based on nitrocellulose to target detection has always been a problem. Here, we use an electrospun nitrocellulose (ENC) fiber membrane instead of traditional nitrocellulose fiber membrane to construct ICT strips for early pregnancy detection. By proper selection of the diameter of the ENC fiber to adjust the pore size, porosity, and morphology of the membrane, ICT strips with low flow rate and high protein loading were obtained. Based on these properties, a convenient and sensitive method for the colorimetric determination of human chorionic gonadotropin was developed. Under the optimal conditions, the detection limit of ICT based on ENC membrane is 10 mIU mL-1 (S/N = 3), the linear detection range is 5-1000 mIU mL-1, and the linear relationship is Y = 0.0434 X - 0.0136 (R2 = 0.9802). In addition, the test strip has good specificity and stability, and will not produce false-positive results. Graphical abstract.


Subject(s)
Chromatography, Affinity/methods , Collodion/chemistry , Chorionic Gonadotropin/analysis , Humans , Limit of Detection , Point-of-Care Systems , Reagent Strips
3.
Polymers (Basel) ; 12(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952183

ABSTRACT

Removal of chromium ions is significant due to their toxicity and harmfulness, however it is very difficult to remove trace Cr(III) complexed with organics because of their strong stability. Herein, a novel electrospun polyacrylonitrile (PAN) nanofibers (NF) adsorbent was fabricated and modified by tannic acid (TA) by a facile blend electrospinning approach for removal of trace Cr(III) in an organic complex. Utilizing the large specific area of nanofibers in the membrane and the good affinity of tannic acid on the nanofibers for hydrolyzed collagen by hydrophobic and hydrogen bonds, the as-prepared PAN-TA NFM exhibited good adsorption toward Cr(III)-collagen complexes and effective reduction of total organic carbon in tannage wastewater. The maximal adsorption capacity of Cr(III) is 79.48 mg g-1 which was obtained at the pH of 7.0 and initial Cr(III) concentration of 50 mg g-1. Importantly, the batch adsorption could decrease the Cr(III) concentration from 10-20 mg L-1 to under 1.5 mg L-1, which showed great application potential for the disposal of trace metal ions in organic complexes from wastewater.

4.
RSC Adv ; 10(33): 19466-19473, 2020 May 20.
Article in English | MEDLINE | ID: mdl-35515442

ABSTRACT

Stretchable superhydrophobic film was fabricated by casting silicone rubber polydimethylsiloxane (PDMS) on a SiO2 nanoparticle-decorated template and subsequent stripping. PDMS endowed the resulting surface with excellent flexibility and stretchability. The use of nanoparticles contributed to the sustained roughening of the surface, even under large strain, offering mechanically durable superhydrophobicity. The resulting composite film could maintain its superhydrophobicity (water contact angle ≈ 161° and sliding angle close to 0°) under a large stretching strain of up to 100% and could withstand 500 stretching-releasing cycles without losing its superhydrophobic properties. Furthermore, the obtained film was resistant to long term exposure to different pH solutions and ultraviolet light irradiation, as well as to manual destruction, sandpaper abrasion, and weight pressing.

5.
ACS Omega ; 4(22): 19756-19764, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31788607

ABSTRACT

Robustness of superhydrophobic materials has been gradually taken into consideration for practical applications; however, little attention has been paid to the impact resistance of the superhydrophobicity of the materials. The present study demonstrated a new route for improving the mechanical durability, especially the impact resistance, of the superhydrophobic materials. First, poly(styrene-co-butadiene)/poly(ethylene-vinyl acetate) (SBR/EVA) composite monoliths with microscale cellular structures were manufactured by vulcanization-foaming processes. Then the composite monoliths were treated with sandpaper to create nanostructures above the revealed micropores after removing the uppermost skin, forming micro/nanotextured surfaces and giving improvements in superhydrophobicity. Due to the elastomeric nature of SBR and EVA, the superhydrophobicity of the monoliths can be maintained even while the material is mechanically impacted or compressed, and wearing helps improvement or recovery of the superhydrophobicity because of the self-similarity of the cellular structure inside the monoliths. Additionally, the obtained superhydrophobic materials are resistant to acidic, alkali, and salt liquors as well as organic solvents and have easy healing capacity of superhydrophobicity with a simple sanding treatment when destroyed by exposure to oxygen plasma.

6.
ACS Appl Mater Interfaces ; 8(41): 28171-28179, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27668829

ABSTRACT

Surfaces with sustainable superhydrophobicity have drawn much attention in recent years for improved durability in practical applications. In this study, hollow mesoporous silica nanoparticles (HMSNs) were prepared and used as reservoirs to load dodecyltrimethoxysilane (DDTMS). Then superhydrophobic surfaces were fabricated by spray coating HMSNs with DDTMS as particle stacking structure and polydimethylsiloxane (PDMS) as hydrophobic interconnection. The mechanical durability of the obtained superhydrophobic surface was evaluated by a cyclic sand abrasion. It was found that once the surface was mechanically damaged, new roughening structures made of the cavity of the HMSNs would expose and maintain suitable hierarchical roughness surrounded by PDMS and DDTMS, favoring sustainable superhydrphobicity of the coating. The surfaces could sustain superhydrophobicity even after 1000 cycles of sand abrasion. This facile strategy may pave the way to the development of robust superhydrophobic surfaces in practical applications.

7.
Sci Rep ; 6: 27262, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27264995

ABSTRACT

A robust, self-healing superhydrophobic poly(ethylene terephthalate) (PET) fabric was fabricated by a convenient solution-dipping method using an easily available material system consisting of polydimethylsiloxane and octadecylamine (ODA). The surface roughness was formed by self-roughening of ODA coating on PET fibers without any lithography steps or adding any nanomaterials. The fabric coating was durable to withstand 120 cycles of laundry and 5000 cycles of abrasion without apparently changing the superhydrophobicity. More interestingly, the fabric can restore its super liquid-repellent property by 72 h at room temperature even after 20000 cycles of abrasion. Meanwhile, after being damaged chemically, the fabric can restore its superhydrophobicity automatically in 12 h at room temperature or by a short-time heating treatment. We envision that this simple but effective coating system may lead to the development of robust protective clothing for various applications.

8.
Nanotechnology ; 26(33): 335602, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26222622

ABSTRACT

Superhydrophobic surfaces on PET textiles were fabricated by combined bioinspiration from the strong adhesion of marine mussels and the two-scale structure of lotus leaves under mild conditions. Dopamine can spontaneously polymerize in alkaline aqueous solution to form a thin adhesive layer of polydopamine (PDA) wrapping on the micro-scale fibers. The as-formed thin PDA layer worked as a reactive template to generate PDA nanoparticles decorated on the fiber surfaces, imparting the textiles with excellent UV-shielding properties as well as a hierarchical structure similar to the morphology of the lotus leaf. After further modification with perfluorodecyl trichlorosilane, the textiles turned superhydrophobic with a water contact angle higher than 150°. Due to the strong adhesion of PDA to a wide range of materials, the present strategy may be extendable to fabrication of superhydrophobic surfaces on a variety of other substrates.


Subject(s)
Adhesives/chemistry , Biomimetic Materials/chemistry , Textiles , Animals , Bivalvia , Hydrophobic and Hydrophilic Interactions , Indoles , Lotus , Polymers
9.
ACS Appl Mater Interfaces ; 7(15): 8251-9, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25832484

ABSTRACT

Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

10.
ACS Appl Mater Interfaces ; 6(13): 10153-61, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24942304

ABSTRACT

Superhydrophobic poly(ethylene terephthalate) (PET) textile surfaces with a self-cleaning property were fabricated by treating the microscale fibers with alkali followed by coating with polydimethylsiloxane (PDMS). Scanning electron microscopy analysis showed that alkali treatment etched the PET and resulted in nanoscale pits on the fiber surfaces, making the textiles have hierarchical structures. Coating of PDMS on the etched fibers affected little the roughening structures while lowered the surface energy of the fibers, thus making the textiles show slippery superhydrophobicity with a self-cleaning effect. Wettability tests showed that the superhydrophobic textiles were robust to acid/alkaline etching, UV irradiation, and long-time laundering. Importantly, the textiles maintained superhydrophobicity even when the textiles are ruptured by severe abrasion. Also colorful images could be imparted to the superhydrophobic textiles by a conventional transfer printing without affecting the superhydrophobicity.

11.
Chem Commun (Camb) ; 49(34): 3588-90, 2013 May 04.
Article in English | MEDLINE | ID: mdl-23525214

ABSTRACT

Rough structures created from bulk materials at the surface could have superior durability. Superhydrophobic colorful surfaces were fabricated through chemical etching of the fiber surfaces, followed by diffusion of fluoroalkylsilane into fibers. The obtained superhydrophobic textiles show strong durability against severe abrasion, long-time laundering, and boiling water.

12.
Nanotechnology ; 22(41): 415603, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21914937

ABSTRACT

ZnO/SiO(2) core/shell particles were fabricated by successive coating of multilayer polyelectrolytes and then a SiO(2) shell onto ZnO particles. The as-prepared ZnO/SiO(2) core/shell particles were coated on poly(ethylene terephthalate) (PET) textiles, followed by hydrophobization with hexadecyltrimethoxysilane, to fabricate superhydrophobic surfaces with UV-shielding properties. Transmission electron microscopy and ζ potential analysis were employed to evidence the fabrication of ZnO/SiO(2) core/shell particles. Scanning electron microscopy and thermal gravimetric analysis were conducted to investigate the surface morphologies of the textile and the coating of the fibers. Ultraviolet-visible spectrophotometry and contact angle measurement indicated that the incorporation of ZnO onto fibers imparted UV-blocking properties to the textile surface, while the coating of SiO(2) shell on ZnO prohibited the photocatalytic degradation of hexadecyltrimethoxysilane by ZnO, making the as-treated PET textile surface show stable superhydrophobicity with good UV-shielding properties.

13.
Sci Technol Adv Mater ; 11(3): 033002, 2010 Jun.
Article in English | MEDLINE | ID: mdl-27877336

ABSTRACT

This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

14.
Sci Technol Adv Mater ; 9(3): 035001, 2008 Jul.
Article in English | MEDLINE | ID: mdl-27877998

ABSTRACT

By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry.

15.
Sci Technol Adv Mater ; 9(3): 035008, 2008 Jul.
Article in English | MEDLINE | ID: mdl-27878005

ABSTRACT

Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.

SELECTION OF CITATIONS
SEARCH DETAIL
...