Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(34): eadi2947, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37624895

ABSTRACT

Neuromodulators in the brain act globally at many forms of synaptic plasticity, represented as metaplasticity, which is rarely considered by existing spiking (SNNs) and nonspiking artificial neural networks (ANNs). Here, we report an efficient brain-inspired computing algorithm for SNNs and ANNs, referred to here as neuromodulation-assisted credit assignment (NACA), which uses expectation signals to induce defined levels of neuromodulators to selective synapses, whereby the long-term synaptic potentiation and depression are modified in a nonlinear manner depending on the neuromodulator level. The NACA algorithm achieved high recognition accuracy with substantially reduced computational cost in learning spatial and temporal classification tasks. Notably, NACA was also verified as efficient for learning five different class continuous learning tasks with varying degrees of complexity, exhibiting a markedly mitigated catastrophic forgetting at low computational cost. Mapping synaptic weight changes showed that these benefits could be explained by the sparse and targeted synaptic modifications attributed to expectation-based global neuromodulation.


Subject(s)
Algorithms , Neural Networks, Computer , Brain , Learning , Recognition, Psychology
2.
Front Neurosci ; 17: 1132269, 2023.
Article in English | MEDLINE | ID: mdl-37021133

ABSTRACT

Network architectures and learning principles have been critical in developing complex cognitive capabilities in artificial neural networks (ANNs). Spiking neural networks (SNNs) are a subset of ANNs that incorporate additional biological features such as dynamic spiking neurons, biologically specified architectures, and efficient and useful paradigms. Here we focus more on network architectures in SNNs, such as the meta operator called 3-node network motifs, which is borrowed from the biological network. We proposed a Motif-topology improved SNN (M-SNN), which is further verified efficient in explaining key cognitive phenomenon such as the cocktail party effect (a typical noise-robust speech-recognition task) and McGurk effect (a typical multi-sensory integration task). For M-SNN, the Motif topology is obtained by integrating the spatial and temporal motifs. These spatial and temporal motifs are first generated from the pre-training of spatial (e.g., MNIST) and temporal (e.g., TIDigits) datasets, respectively, and then applied to the previously introduced two cognitive effect tasks. The experimental results showed a lower computational cost and higher accuracy and a better explanation of some key phenomena of these two effects, such as new concept generation and anti-background noise. This mesoscale network motifs topology has much room for the future.

3.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7621-7631, 2022 12.
Article in English | MEDLINE | ID: mdl-34125691

ABSTRACT

Spiking neural networks (SNNs) contain more biologically realistic structures and biologically inspired learning principles than those in standard artificial neural networks (ANNs). SNNs are considered the third generation of ANNs, powerful on the robust computation with a low computational cost. The neurons in SNNs are nondifferential, containing decayed historical states and generating event-based spikes after their states reaching the firing threshold. These dynamic characteristics of SNNs make it difficult to be directly trained with the standard backpropagation (BP), which is also considered not biologically plausible. In this article, a biologically plausible reward propagation (BRP) algorithm is proposed and applied to the SNN architecture with both spiking-convolution (with both 1-D and 2-D convolutional kernels) and full-connection layers. Unlike the standard BP that propagates error signals from postsynaptic to presynaptic neurons layer by layer, the BRP propagates target labels instead of errors directly from the output layer to all prehidden layers. This effort is more consistent with the top-down reward-guiding learning in cortical columns of the neocortex. Synaptic modifications with only local gradient differences are induced with pseudo-BP that might also be replaced with the spike-timing-dependent plasticity (STDP). The performance of the proposed BRP-SNN is further verified on the spatial (including MNIST and Cifar-10) and temporal (including TIDigits and DvsGesture) tasks, where the SNN using BRP has reached a similar accuracy compared to other state-of-the-art (SOTA) BP-based SNNs and saved 50% more computational cost than ANNs. We think that the introduction of biologically plausible learning rules to the training procedure of biologically realistic SNNs will give us more hints and inspiration toward a better understanding of the biological system's intelligent nature.


Subject(s)
Models, Neurological , Neural Networks, Computer , Neurons/physiology , Algorithms , Reward
4.
Sci Adv ; 7(43): eabh0146, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34669481

ABSTRACT

Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks (ANNs). We showed that incorporating a nonlocal feature of synaptic plasticity found in natural neural networks, whereby synaptic modification at output synapses of a neuron backpropagates to its input synapses made by upstream neurons, markedly reduced the computational cost without affecting the accuracy of spiking neural networks (SNNs) and ANNs in supervised learning for three benchmark tasks. For SNNs, synaptic modification at output neurons generated by spike timing­dependent plasticity was allowed to self-propagate to limited upstream synapses. For ANNs, modified synaptic weights via conventional backpropagation algorithm at output neurons self-backpropagated to limited upstream synapses. Such self-propagating plasticity may produce coordinated synaptic modifications across neuronal layers that reduce computational cost.

5.
Front Neurosci ; 15: 654786, 2021.
Article in English | MEDLINE | ID: mdl-33776644

ABSTRACT

Different types of dynamics and plasticity principles found through natural neural networks have been well-applied on Spiking neural networks (SNNs) because of their biologically-plausible efficient and robust computations compared to their counterpart deep neural networks (DNNs). Here, we further propose a special Neuronal-plasticity and Reward-propagation improved Recurrent SNN (NRR-SNN). The historically-related adaptive threshold with two channels is highlighted as important neuronal plasticity for increasing the neuronal dynamics, and then global labels instead of errors are used as a reward for the paralleling gradient propagation. Besides, a recurrent loop with proper sparseness is designed for robust computation. Higher accuracy and stronger robust computation are achieved on two sequential datasets (i.e., TIDigits and TIMIT datasets), which to some extent, shows the power of the proposed NRR-SNN with biologically-plausible improvements.

SELECTION OF CITATIONS
SEARCH DETAIL
...