Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Divers ; 45(6): 712-721, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38197008

ABSTRACT

Akebia species, belonging to Lardizabalaceae, are widespread from subtropical to temperate environments of China, Japan, and Korea. All known Akebia species have medicinal and dietary value and have been widely cultivated as a new fruit crop in many areas of China. However, compared with other crop species, the breeding improvement and commercial cultivation of Akebia remain in their infancy. This review systematically introduces the present germplasm resources, geographical distribution, biological characteristics, interspecific and intraspecific cross compatibility, molecular biology, and breeding progress in Akebia species. Akebia plants are widely distributed in Shanxi, Henan, Sichuan, Chongqing, Hunan, Hubei, Jiangxi, Zhejiang, and Fujian provinces of China, and wild Akebia plants exhibit abundant phenotypic and genetic diversity due to their wide range of geographical distribution and high adaptability in different habitats. Interspecific artificial hybridization experiments have been conducted in our Akebia germplasm resources nursery. The results showed that there was no reproductive isolation between Akebia species, and fertile progeny could be produced. The synthesis of knowledge on these species provides insights for the rational development and utilization of these germplasm resources, and can facilitate the development of new breeding lines or varieties for commercial cultivation or production. Finally, perspectives on Akebia breeding research are discussed and conclusions are provided. This review provided breeders with new insights into Akebia domestication and breeding, and we also proposed five basic steps in the domestication of new fruit crops.

2.
Environ Sci Technol ; 55(11): 7276-7286, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34009957

ABSTRACT

Vehicle emissions are an important source of urban particular matter. To investigate the secondary organic aerosol (SOA) formation potential of real-world vehicle emissions, we exposed on-road air in Beijing to hydroxyl radicals generated in an oxidation flow reactor (OFR) under high-NOx conditions on-board a mobile laboratory and characterized SOA and their precursors with a suite of state-of-the-art instrumentation. The OFR produced 10-170 µg m-3 of SOA with a maximum SOA formation potential of 39-50 µg m-3 ppmv-1 CO that occurred following an integrated OH exposure of (1.3-2.0) × 1011 molecules cm-3 s. The results indicate relatively shorter photochemical ages for maximum SOA production than previous OFR results obtained under low-NOx conditions. Such timescales represent the balance of functionalization and fragmentation, possibly resulting in different spatial distributions of SOA in different seasons as the oxidant level changes. The detected precursors may explain as much as 13% of the observed SOA with the remaining plausibly contributed by the oxidation of undetected intermediate-volatility organic compounds. Extrapolation of the results suggests an annual SOA production rate of 0.78 Tg yr-1 from mobile gasoline sources in China, highlighting the importance of effective regulation of gaseous vehicular precursors to improve air quality in the future.


Subject(s)
Air Pollutants , Vehicle Emissions , Aerosols/analysis , Air Pollutants/analysis , Beijing , China , Vehicle Emissions/analysis
3.
Nat Commun ; 10(1): 5293, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757964

ABSTRACT

Spider silks show unique combinations of strength, toughness, extensibility, and energy absorption. To date, it has been difficult to obtain spider silk-like mechanical properties using non-protein approaches. Here, we report on an artificial spider silk produced by the water-evaporation-induced self-assembly of hydrogel fibre made from polyacrylic acid and silica nanoparticles. The artificial spider silk consists of hierarchical core-sheath structured hydrogel fibres, which are reinforced by ion doping and twist insertion. The fibre exhibits a tensile strength of 895 MPa and a stretchability of 44.3%, achieving mechanical properties comparable to spider silk. The material also presents a high toughness of 370 MJ m-3 and a damping capacity of 95%. The hydrogel fibre shows only ~1/9 of the impact force of cotton yarn with negligible rebound when used for impact reduction applications. This work opens an avenue towards the fabrication of artificial spider silk with applications in kinetic energy buffering and shock-absorbing.

4.
ACS Appl Mater Interfaces ; 11(11): 10862-10873, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30735351

ABSTRACT

Inflatable conducting devices providing improved properties and functionalities are needed for diverse applications. However, the difficult part in making high-performance inflatable devices is the enabling of two-dimensional (2D) buckles with controlled structures on inflatable catheters. Here, we report the fabrication of highly inflatable devices with controllable structures by wrapping the super-aligned carbon nanotube sheet (SACNS) on the pre-inflated catheter. The resulting structure exhibits unique 2D buckled structures including quasi-parallel buckles, crisscrossed buckles, and hierarchically buckled structures, which enables reversible structural changes of 7470% volumetric strain. The 2D SACNS buckled structures show stable electrical conductance and surface wettability during large strain inflation/deflation cycles. Inflatable devices including inflatable tumor ablation, capacitive volumetric strain sensor, and communication via inflatable radio frequency antenna based on these structures are demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...