Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 79(18): 4729-4743, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31308046

ABSTRACT

Quiescent cancer stem cells (CSC) play important roles in tumorigenesis, relapse, and resistance to chemoradiotherapy. However, the determinants of CSC quiescence and how they sustain themselves to generate tumors and relapse beyond resistance to chemoradiotherapy remains unclear. Here, we found that SET domain-containing protein 4 (SETD4) epigenetically controls breast CSC (BCSC) quiescence by facilitating heterochromatin formation via H4K20me3 catalysis. H4K20me3 localized to the promoter regions and regulated the expression of a set of genes in quiescent BCSCs (qBCSC). SETD4-defined qBCSCs were resistant to chemoradiotherapy and promoted tumor relapse in a mouse model. Upon activation, a SETD4-defined qBCSC sustained itself in a quiescent state by asymmetric division and concurrently produced an active daughter cell that proliferated to produce a cancer cell population. Single-cell sequence analysis indicated that SETD4+ qBCSCs clustered together as a distinct cell type within the heterogeneous BCSC population. SETD4-defined quiescent CSCs were present in multiple cancer types including gastric, cervical, ovarian, liver, and lung cancers and were resistant to chemotherapy. SETD4-defined qBCSCs had a high tumorigenesis potential and correlated with malignancy and chemotherapy resistance in clinical breast cancer patients. Taken together, the results from our previous study and current study on six cancer types reveal an evolutionarily conserved mechanism of cellular quiescence epigenetically controlled by SETD4. Our findings provide insights into the mechanism of tumorigenesis and relapse promoted by SETD4-defined quiescent CSCs and have broad implications for clinical therapies. SIGNIFICANCE: These findings advance our knowledge on the epigenetic determinants of quiescence in cancer stem cell populations and pave the way for future pharmacologic developments aimed at targeting drug-resistant quiescent stem cells.


Subject(s)
Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Epigenomics , Methyltransferases/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Resting Phase, Cell Cycle , Animals , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/therapy , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chemoradiotherapy , Female , Humans , Methyltransferases/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/therapy , Neoplastic Stem Cells/metabolism , Prognosis , Protein Domains , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Biochem J ; 476(12): 1753-1769, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31189566

ABSTRACT

To cope with harsh environments, the Artemia shrimp produces gastrula embryos in diapause, a state of obligate dormancy, having cellular quiescence and suppressed metabolism. The mechanism behind these cellular events remains largely unknown. Here, we study the regulation of cell quiescence using diapause embryos of Artemia We found that Artemia DEK (Ar-DEK), a nuclear factor protein, was down-regulated in the quiescent cells of diapause embryos and enriched in the activated cells of post-diapause embryos. Knockdown of Ar-DEK induced the production of diapause embryos whereas the control Artemia released free-swimming nuaplii. Our results indicate that Ar-DEK correlated with the termination of cellular quiescence via the increase in euchromatin and decrease in heterochromatin. The phenomena of quiescence have many implications beyond shrimp ecology. In cancer cells, for example, knockdown of DEK also induced a short period of cellular quiescence and increased resistance to environmental stress in MCF-7 and MKN45 cancer cell lines. Analysis of RNA sequences in Artemia and in MCF-7 revealed that the Wnt and AURKA signaling pathways were all down-regulated and the p53 signaling pathway was up-regulated upon inhibition of DEK expression. Our results provide insight into the functions of Ar-DEK in the activation of cellular quiescence during diapause formation in Artemia.


Subject(s)
Artemia/embryology , Arthropod Proteins/biosynthesis , Diapause/physiology , Embryo, Nonmammalian/enzymology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Receptors, Eph Family/biosynthesis , Wnt Signaling Pathway/physiology , Animals , Artemia/genetics , Arthropod Proteins/genetics , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Humans , MCF-7 Cells , Receptors, Eph Family/genetics
3.
J Biol Chem ; 294(16): 6598-6611, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30765604

ABSTRACT

Cellular quiescence, a reversible state in which growth, proliferation, and other cellular activities are arrested, is important for self-renewal, differentiation, development, regeneration, and stress resistance. However, the physiological mechanisms underlying cellular quiescence remain largely unknown. In the present study, we used embryos of the crustacean Artemia in the diapause stage, in which these embryos remain quiescent for prolonged periods, as a model to explore the relationship between cell-membrane potential (Vmem) and quiescence. We found that Vmem is hyperpolarized and that the intracellular chloride concentration is high in diapause embryos, whereas Vmem is depolarized and intracellular chloride concentration is reduced in postdiapause embryos and during further embryonic development. We identified and characterized the chloride ion channel protein cystic fibrosis transmembrane conductance regulator (CFTR) of Artemia (Ar-CFTR) and found that its expression is silenced in quiescent cells of Artemia diapause embryos but remains constant in all other embryonic stages. Ar-CFTR knockdown and GlyH-101-mediated chemical inhibition of Ar-CFTR produced diapause embryos having a high Vmem and intracellular chloride concentration, whereas control Artemia embryos released free-swimming nauplius larvae. Transcriptome analysis of embryos at different developmental stages revealed that proliferation, differentiation, and metabolism are suppressed in diapause embryos and restored in postdiapause embryos. Combined with RNA sequencing (RNA-Seq) of GlyH-101-treated MCF-7 breast cancer cells, these analyses revealed that CFTR inhibition down-regulates the Wnt and Aurora Kinase A (AURKA) signaling pathways and up-regulates the p53 signaling pathway. Our findings provide insight into CFTR-mediated regulation of cellular quiescence and Vmem in the Artemia model.


Subject(s)
Artemia/embryology , Cell Membrane/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diapause/physiology , Embryo, Nonmammalian/embryology , Animals , Artemia/genetics , Arthropod Proteins/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , MCF-7 Cells
4.
Oncotarget ; 8(55): 93839-93855, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29212193

ABSTRACT

Cancer stem-like cells (CSCs) have been identified as the initial cell in formation of cancer. Quiescent CSCs can "hide out" from traditional cancer therapy which may produce an initial response but are often unsuccessful in curing patients. Thus, levels of CSC in patients may be used as an indicator to measure the chance of recurrence of cancer after therapy. The goals of our work are to develop specific exosomal miRNA clusters for gastric CSCs that can potentially predict which patients are at high risk for developing gastric cancer (GC) in order to diagnose GC at an early stage. Here, upon sorting gastric CSCs, we initially isolated and characterized exosomes secreted by both gastric CSCs and their differentiated cells (DCs). By deep sequencing of each exosomal miRNA library, 11 typical differentially expressed miRNAs were identified as signature miRNAs for CSC. Gene target prediction, GO annotation and KEGG pathway enrichment analysis showed possible functions associated with these signature miRNAs. Hence, upon research of exosomal miRNAs that would influence behavior of tumor cells and their microenvironment, this study shows that a specific miRNA signature is present in CSCs, and implies that a potential miRNA biomarker reflecting the stage of gastric cancer progression and metastasis could be developed in the foreseeable future.

5.
Cell Stress Chaperones ; 21(4): 665-75, 2016 07.
Article in English | MEDLINE | ID: mdl-27125785

ABSTRACT

Autophagy is an essential homeostatic process by which cytoplasmic components, including macromolecules and organelles, are degraded by lysosome. Increasing evidence suggests that phosphorylated AMP-activated protein kinase (p-AMPK) and target of rapamycin (TOR) play key roles in the regulation of autophagy. However, the regulation of autophagy in quiescent cells remains unclear, despite the fact that autophagy is known to be critical for normal development, regeneration, and degenerative diseases. Here, crustacean Artemia parthenogenetica was used as a model system because they produced and released encysted embryos that enter a state of obligate dormancy in cell quiescence to withstand various environmental threats. We observed that autophagy was increased before diapause stage but dropped to extremely low level in diapause cysts in Artemia. Western blot analyses indicated that the regulation of autophagy was AMPK/TOR independent during diapause embryo formation. Importantly, the level of p8 (Ar-p8), a stress-inducible transcription cofactor, was elevated at the stage just before diapause and was absent in encysted embryos, indicating that Ar-p8 may regulate autophagy. The results of Ar-p8 knockdown revealed that Ar-p8 regulated autophagy during diapause formation in Artemia. Moreover, we observed that activating transcription factors 4 and 6 (ATF4 and ATF6) responded to Ar-p8-regulated autophagy, indicating that autophagy targeted endoplasmic reticulum (ER) during diapause formation in Artemia. Additionally, AMPK/TOR-independent autophagy was validated in human gastric cancer MKN45 cells overexpressing Ar-p8. The findings presented here may provide insights into the role of p8 in regulating autophagy in quiescent cells.


Subject(s)
Artemia/cytology , Artemia/embryology , Autophagy , Diapause, Insect/genetics , Embryo, Nonmammalian/cytology , Transcription Factors/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 6/metabolism , Adenylate Kinase/metabolism , Animals , Artemia/radiation effects , Autophagy/radiation effects , Cell Line, Tumor , Diapause, Insect/radiation effects , Embryo, Nonmammalian/radiation effects , Endoplasmic Reticulum Stress/radiation effects , Environment , Humans , Stress, Physiological/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...