Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Stem Cell Res ; 56: 102530, 2021 10.
Article in English | MEDLINE | ID: mdl-34507144

ABSTRACT

LAMIN A/C, encoded by the LMNA gene, supports the normal structure of the cell nucleus and regulates the connection between the nucleus and the cytoskeleton as a component of the nucleus envelope. The loss of expression and function of the LMNA gene would lead to the occurrence of congenital muscular dystrophy and Emery-Dreifuss muscular dystrophy which are collectively named as laminopathies. Here, we report a human induced pluripotent stem cell (iPSC) line (EHTJUi005-A-3) generated from a wild iPSC (EHTJUi005-A) with homozygous knockout of the gene LMNA through CRISPR/Cas9. This iPSC line provides a useful research model for studying laminopathies disease.


Subject(s)
Induced Pluripotent Stem Cells , Laminopathies , Muscular Dystrophy, Emery-Dreifuss , CRISPR-Cas Systems/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation , Technology
2.
Stem Cell Res ; 56: 102519, 2021 10.
Article in English | MEDLINE | ID: mdl-34464854

ABSTRACT

SUV39H1 is a histone methyltransferase involve numerous biological processes, including of aging, embryo development, tumor growth and mitosis via catalysis of dimethylation and trimethylation of lysine 9 of histone H3. Here we report a human induced pluripotent stem cell line (EHTJUi005-A-1) which is generated from a wildtype human iPSC previously established in our laboratory, and this iPSC has a homozygous knockout of 8 bp in Exon 2 of SUV39H1. This iPSC model provides a valuable resource to study epigenetic regulation in extensive biological processes as mentioned above.


Subject(s)
Induced Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Epigenesis, Genetic , Histone Methyltransferases , Histones/genetics , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Repressor Proteins/genetics
3.
Stem Cell Res ; 53: 102328, 2021 05.
Article in English | MEDLINE | ID: mdl-34087980

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease. An induced pluripotent stem cell line (EHTJUi003-A) was generated from umbilical cord blood mononuclear cells (UCBMCs) of a female neonate with heterozygous mutation of p.L460Wfs (c.1377delC) in the MYBPC3 gene. This iPSC model offers a very valuable resource to study the pathological mechanism of HCM in vitro.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Cardiomyopathy, Hypertrophic/genetics , Cytoskeletal Proteins , Female , Heterozygote , Humans , Infant, Newborn , Mutation
4.
Stem Cell Res ; 53: 102369, 2021 05.
Article in English | MEDLINE | ID: mdl-34087998

ABSTRACT

Familial Arrhythmogenic Right Ventricular Dysplasia (ARVD) is a primary cardiomyopathy characterized by the abnormality of the right ventricular muscle. ARVD may be life-threatening due to the induction of paroxysmal refractory ventricular tachycardia or supraventricular arrhythmia. A human induced pluripotent stem cell line (EHTJUi004-A) was generated from human umbilical cord blood mononuclear cells (UCBMCs) of a female neonate with heterozygous mutation of p.Leu1563fs (c.4683_4684delCT) in the DSP gene. This iPS cell line resource provides an ideal in vitro model to study the pathological mechanism of ARVD.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Induced Pluripotent Stem Cells , Tachycardia, Ventricular , Arrhythmias, Cardiac , Arrhythmogenic Right Ventricular Dysplasia/genetics , Female , Humans , Infant, Newborn , Mutation
5.
Stem Cell Res ; 48: 101932, 2020 10.
Article in English | MEDLINE | ID: mdl-32889247

ABSTRACT

Familial exudative vitreoretinopathy (FEVR) is an autosomal dominant genetic disease. An induced pluripotent stem cell line (EHTJUi002-A) was generated from umbilical cord blood mononuclear cells (UCBMCs) of a neonate with heterozygous mutation of p.W226X(c.678G>A) in the FZD4 gene. This iPSC model offers a very valuable resource to study the pathological mechanism of FEVR in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Familial Exudative Vitreoretinopathies , Frizzled Receptors/genetics , Humans , Infant, Newborn , Mutation , Pedigree
6.
Stem Cell Res ; 43: 101731, 2020 03.
Article in English | MEDLINE | ID: mdl-32062134

ABSTRACT

Long QT syndrome type 8 is an uncommon inherited condition .An induced pluripotent stem cell (iPSC) line was generated from Peripheral blood mononuclear cells (PBMCs) of a 10-year-old patient with heterozygous mutation of p.R858H(c.2573G > A)in the CACNA1C gene. This iPSC model offers a very valuable resource to study the disease pathophysiology and to develop therapeutics for treatment of Long QT syndrome type 8 patients.


Subject(s)
Calcium Channels, L-Type/genetics , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/genetics , Animals , Cell Line , Child , Humans , Male , Mutation
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 22(2): 310-4, 2014 Apr.
Article in Chinese | MEDLINE | ID: mdl-24762997

ABSTRACT

The study was aimed to investigate the inducing effect of ursolic acid (UA) on the apoptosis of human T-cell leukemia/lymphoma (Jurkat), and whether the regulation of PTEN involved in the effect of UA on Jurkat cells. The Jurkat cells were treated with different concentrations of UA for different time. The cell proliferation was analyzed with cytotoxicity test (CCK8 method). Cell apoptosis was detected by fluorescence microscopy and flow cytometry. The expression of PTEN mRNA was detected by real-time quantitative PCR. The results indicated that UA could significantly inhibited the viability of Jurkat cells treated with 10-80 µmol/L and in dose- and time-dependent manner. UA could induce Jurkat cell apoptosis in a dose-dependent manner, which was statistical different from the control at the same time (P < 0.05). PTEN mRNA expression was up-regulated by UA, which was statistical different from the control (P < 0.05). It is concluded that UA may induce Jurkat cell apoptosis by up-regulating the PTEN mRNA expression.


Subject(s)
Apoptosis/drug effects , PTEN Phosphohydrolase/metabolism , Triterpenes/pharmacology , Cell Proliferation , Dose-Response Relationship, Drug , Humans , Jurkat Cells , PTEN Phosphohydrolase/genetics , RNA, Messenger/genetics , Up-Regulation , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...