Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877732

ABSTRACT

Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.

2.
Aesthetic Plast Surg ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528127

ABSTRACT

INTRODUCTION: Since 3D printing can be used to design implants according to the specific conditions of patients, it has become an emerging technology in tissue engineering and regenerative medicine. How to improve the mechanical, elastic and adhesion properties of 3D-printed photocrosslinked hydrogels is the focus of cartilage tissue repair and reconstruction research. MATERIALS AND METHODS: We established a strategy for toughening hydrogels by mixing GelMA-DOPA (GD), which is prepared by coupling dopamine (DA) with GelMA, with HAMA, bacterial cellulose (BC) to produce composite hydrogels (HB-GD). HB-GD hydrogel scaffolds were characterized in vitro by scanning electron microscopy (SEM), Young's modulus, swelling property and rheological property tests. And biocompatibility and chondrogenic ability were tested by live/dead staining, DNA quantitative analysis and immunofluorescence staining. Combined with 3D bioprinting technology, mouse chondrocytes (ADTC5) were added to form a biological chain to construct an in vitro model, and the feasibility of the model for nasal cartilage regeneration was verified by cytology evaluation. RESULTS: With the increase of GD concentration, the toughness of the composite hydrogel increased (47.0 ± 2.7 kPa (HB-5GD)-158 ± 3.2 kPa (HB-20GD)), and it had excellent swelling properties, rheological properties and printing properties. The HB-GD composite hydrogel promoted the proliferation and differentiation of ATDC5. Cells in 3D printed scaffolds had higher survival rates (> 95%) and better protein expression than the encapsulated cultures. CONCLUSION: The HB-10GD hydrogel can be made into a porous scaffold with precise shape, good internal pore structure, high mechanical strength and good swelling rate through extrusion 3D printing. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

3.
Article in English | MEDLINE | ID: mdl-36779653

ABSTRACT

In this study, inspired by the components of cartilage matrix, a photo-cross-linked extracellular matrix (ECM) bioink composed of modified proteins and polysaccharides was presented, including gelatin methacrylate, hyaluronic acid methacrylate, and chondroitin sulfate methacrylate. The systematic experiments were performed, including morphology, swelling, degradation, mechanical and rheological tests, printability analysis, biocompatibility and chondrogenic differentiation characterization, and RNA sequencing (RNA-seq). The results indicated that the photo-cross-linked ECM hydrogels possessed suitable degradation rate and excellent mechanical properties, and the three-dimensional (3D) bioprinted ECM scaffolds obtained favorable shape fidelity and improved the basic properties, biological properties, and chondrogenesis of synovium-derived MSCs (SMSCs). The strong stimulation of transforming growth factor-beta 1 (TGF-ß1) enhanced the aggregation, proliferation, and differentiation of SMSCs, thereby enhancing chondrogenic ECM deposition. In vivo animal experiments and gait analysis further confirmed that the ECM scaffold combined with TGF-ß1 could effectively promote cartilage regeneration and functional recovery of injured joints. To sum up, the photo-cross-linked ECM bioink for 3D printing of functional cartilage tissue may become an attractive strategy for cartilage regeneration.

4.
Regen Biomater ; 10: rbac104, 2023.
Article in English | MEDLINE | ID: mdl-36683741

ABSTRACT

Osteochondral defect caused by trauma or osteoarthritis exhibits a major challenge in clinical treatment with limited symptomatic effects at present. The regeneration and remodeling of subchondral bone play a positive effect on cartilage regeneration and further promotes the repair of osteochondral defects. Making use of the strengths of each preparation method, the combination of 3D printing and electrospinning is a promising method for designing and constructing multi-scale scaffolds that mimic the complexity and hierarchical structure of subchondral bone at the microscale and nanoscale, respectively. In this study, the 3D printed-electrospun poly(ɛ-caprolactone)/nano-hydroxyapatites/multi-walled carbon nanotubes (PCL/nHA/MWCNTs) scaffolds were successfully constructed by the combination of electrospinning and layer-by-layer 3D printing. The resulting dual-scale scaffold consisted of a dense layer of disordered nanospun fibers and a porous microscale 3D scaffold layer to support and promote the ingrowth of subchondral bone. Herein, the biomimetic PCL/nHA/MWCNTs scaffolds enhanced cell seeding efficiency and allowed for higher cell-cell interactions that supported the adhesion, proliferation, activity, morphology and subsequently improved the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Together, this study elucidates that the construction of 3D printed-electrospun PCL/nHA/MWCNTs scaffolds provides an alternative strategy for the regeneration of subchondral bone and lays a foundation for subsequent in vivo studies.

5.
Int J Nanomedicine ; 15: 9571-9586, 2020.
Article in English | MEDLINE | ID: mdl-33293808

ABSTRACT

BACKGROUND: Previously, we demonstrated the therapeutic efficacy of a human papillomavirus (HPV) vaccine, including HPV16 E7 peptide and CpG oligodeoxynucleotides (CpG ODN), against small TC-1 grafted tumors. Here, we developed an HPV16 E7 peptide and CpG ODN vaccine delivered using liposomes modified with DC-targeting mannose, Lip E7/CpG, and determined its anti-tumor effects and influence on systemic immune responses and the tumor microenvironment (TME) in a mouse large TC-1 grafted tumor model. METHODS: L-alpha-phosphatidyl choline (SPC), cholesterol (CHOL), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000)] (DSPE-PEG-2000), 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) and Mannose-PEG-DSPE, loaded with HPV16 E7 peptide and CpG ODN, were used to construct the Lip E7/CpG vaccine. The anti-tumor effects and potential mechanism of Lip E7/CpG were assessed by assays of tumor growth inhibition, immune cells, in vivo cytotoxic T lymphocyte (CTL) responses and cytokines, chemokines, CD31, Ki67 and p53 expression in the TME. In addition, toxicity of Lip E7/CpG to major organs was evaluated. RESULTS: Lip E7/CpG had a diameter of 122.21±8.37 nm and remained stable at 4°C for 7 days. Co-delivery of HPV16 E7 peptide and CpG ODN by liposomes exerted potent anti-tumor effects in large (tumor volume ≥200mm3) TC-1 grafted tumor-bearing mice with inhibition rates of 80% and 78% relative to the control and Free E7/CpG groups, respectively. Vaccination significantly increased numbers of CD4+ and CD8+ T cells, and IFN-γ-producing cells in spleens and tumors and enhanced HPV-specific CTL responses, while reducing numbers of inhibitory cells including myeloid-derived suppressor cells and macrophages. Expression of cytokines and chemokines was altered and formation of tumor blood vessels was reduced in the Lip E7/CpG group, indicating possible modulation of the immunosuppressive TME to promote anti-tumor responses. Lip E7/CpG did not cause morphological changes in major organs. CONCLUSION: Lip E7/CpG induced anti-tumor effects by enhancing cellular immunity and improving tumor-associated immunosuppression. Mannose-modified liposomes are the promising vaccine delivery strategy for cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cancer Vaccines/administration & dosage , Liposomes/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Papillomavirus E7 Proteins/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Cell Line, Tumor , Cytokines/metabolism , Drug Delivery Systems , Female , Humans , Immunotherapy/methods , Liposomes/chemistry , Liposomes/pharmacology , Mannose/chemistry , Mice, Inbred C57BL , Oligodeoxyribonucleotides/immunology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...