Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(1): eaao1705, 2018 01.
Article in English | MEDLINE | ID: mdl-29340301

ABSTRACT

Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (µc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V-1 s-1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies.

2.
Macromol Rapid Commun ; 33(23): 2015-22, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-22941907

ABSTRACT

An injectable nanofibrous hydrogel scaffold integrated with growth factors (GFs) loaded polysaccharide nanoparticles was developed that specifically allows for targeted adipose-derived stem cells (ASCs) encapsulation and soft tissue engineering. The nanofibrous hydrogel was produced via biological conjugation of biotin-terminated star-shaped poly(ethylene glycol) (PEG-Biotin) and streptavidin-functionalized hyaluronic acid (HA-Streptavidin). The polysaccharide nanoparticles were noncovalently assembled via electrostatic interactions between low-molecular-weight heparin (LMWH) and N,N,N-trimethylchitosan chloride (TMC). Vascular endothelial growth factor (VEGF) was entrapped in the LMWH/TMC nanoparticles by affinity interactions with LMWH.


Subject(s)
Drug Delivery Systems/methods , Hydrogels/chemistry , Nanofibers/chemistry , Tissue Engineering/methods , Capsules , Chitosan/chemistry , Drug Carriers/chemistry , Heparin, Low-Molecular-Weight/chemistry , Humans , Hyaluronic Acid/chemistry , Injections , Polyethylene Glycols/chemistry , Static Electricity , Stem Cells/cytology , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...