Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 574: 337-346, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32335483

ABSTRACT

Full visible spectrum photonic droplets and consequent microcapsules with nano-in-micro structure were prepared through microfluidic technique. Photo-curable resin and suspension of monodispersed soft nanogels were used as shell and core of the microcapsules, respectively. Upon UV irradiation, the droplets can be subsequently transformed into photonic microcapsules with an ultrathin polymeric shell. The shell thickness of the photonic microcapsules was found to be approximately 700 nm. Due to the ultrathin shell and soft core, the photonic microcapsules with nano-in-micro structure display dramatic changes both in shapes and photonic property under the impact of osmosis effect or temperature stimulus. Typically, the shell and core parts of nano-in-micro structure could respectively undergo a size expansion/even rupture and a size decrease/buckling under hypotonic and hypertonic condition. Correspondingly, the peak value of the reflection spectra of the microcapsules showed a redshift and blue shift, respectively. The mechanism to the structure and optical properties variation involves the osmotic pressure induced the volume-fraction change of the nanogel-based photonic dispersion and the shell buckling of the core/shell microcapsules.

2.
ACS Omega ; 4(7): 12043-12048, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460317

ABSTRACT

Intracellular thiols (e.g., cysteine, homocysteine, and glutathione) play critical roles in biological functions. Glutathione is the most abundant cellular thiol which is important for preserving redox homeostasis in biosystems. Herein, we demonstrated the fabrication of responsive photonic crystals (RPCs) for selective detection of thiol-containing biomolecules through the combination of self-assembly of monodisperse carbon-encapsulated Fe3O4 nanoparticles (NPs) and in situ photopolymerization. Typically, the polyacrylamide-based PCs were prepared by a cross-linking agent containing disulfide bonds. Interestingly, the specific chemical reaction between the disulfide bonds and thiol-containing biomolecules leads to the decrease of the cross-linking degree for the RPCs, triggering the swelling of the hydrogel and increase of the NP lattice spacing. The reduced glutathione (10-6 to 10-2 mol/L) can be determined by measuring the diffracted wavelength or visually observing the structural color change. Moreover, the RPCs can be used to detect different kinds of thiol-containing biomolecules by a simple color variation due to different reaction rates between disulfide bonds and different thiol-containing biomolecules. This study provides a facile yet effective strategy for visualized determination of the thiol-containing biomolecules.

3.
Langmuir ; 34(13): 3987-3992, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29534571

ABSTRACT

In this work, we present a fast and efficient strategy for the preparation of responsive photonic hydrogels for aldehyde sensing by combining the self-assembly of monodisperse carbon-encapsulated Fe3O4 nanoparticles (NPs) and in situ photopolymerization of polyacrylamide (PAM) hydrogels. The responsive photonic hydrogels exhibit structural color variation after being treated with formaldehyde aqueous solution, which can be attributed to the chemical reaction between the amide groups in the hydrogels and the formaldehyde. We have also shown that the photonic hydrogels can be used to determine the concentration of formaldehyde and to differentiate aldehydes through a facile reflection spectra shift and color change. This study provides a facile strategy for the visualized determination of aldehyde in aqueous solution.

4.
Langmuir ; 31(31): 8732-7, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26194019

ABSTRACT

We present a fast and efficient strategy for the preparation of photonic hydrogels for compression and organic solvent sensing by the self-assembly of monodisperse carbon-encapsulated Fe3O4 nanoparticles (NPs). The hydrogel film was composed of acrylamide (AM) and cross-linker N,N'-methylenebis(acrylamide) (BIS), and the formed 1D NPs chain structure can be fixed within the hydrogels under a magnetic field by in situ photopolymerization. The resulting photonic hydrogels display vivid structural color which can be tuned by pressing and organic solvent treatment. The 0.2 kPa compression applied to the photonic hydrogels can be detected by the 37 nm blue shift of a reflection peak. Importantly, the photonic hydrogels can recover to their original state (<1 s) after being compressed on a pattern. Moreover, the sensitivity of mechanochromic photonic hydrogels can be adjusted by manipulating the concentration of monomers, and a large reflection peak shift (4.3 kPa, 200 nm) was observed. The detection range of the compression sensor can thus increase from 0-4.3 to 0-130.6 kPa. The photonic hydrogels are nearly monochromatic, with high sensitivity and stability and fast reversibility, and are potentially useful in displays, diagnostics, compression and solvent sensing.

5.
J Am Chem Soc ; 136(44): 15461-4, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25298164

ABSTRACT

Co/Fe Prussian Blue analogues are known to display both thermally and light induced electron transfer attributed to the switching between diamagnetic {Fe(II)LS(µ-CN)Co(III)LS} and paramagnetic {Fe(III)LS(µ-CN)Co(II)HS} pairs (LS = low spin; HS = high spin). In this work, a dinuclear cyanido-bridged Co/Fe complex, the smallest {Fe(µ-CN)Co} moiety at the origin of the remarkable physical properties of these systems, has been designed by a rational building-block approach. Combined structural, spectroscopic, magnetic and photomagnetic studies reveal that a metal-to-metal electron transfer that can be triggered in solid state by light, temperature and solvent contents, is observed for the first time in a dinuclear complex.

6.
Langmuir ; 30(40): 11883-9, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25233156

ABSTRACT

We demonstrate a rapid and robust method to fabricate uniform core-shell photonic crystal (PC) microbeads by the microfluidic and centrifugation-redispersion technique. Colored crystalline colloidal arrays (CCAs) were first prepared through centrifugation-redispersion approach by self-assembly of polystyrene-poly(N-isopropylacrylamide) (PS-PNIPAm) core/shell nanoparticles (NPs). Different from the conventional NPs (e.g., charged PS or PNIPAm NPs), PS-PNIPAm NPs could easily self-assemble into well-ordered CCAs by only one purification step without laborious pretreatment (e.g., dialysis or ion exchange) or slow solvent-evaporation process. The CCAs is then encapsulated into a transparent polymer shell with functional groups (e.g., copolymer of ETPTA and butyl acrylate (BA)), triggering the formation of core-shell PC microbeads which can be used as optical encoding microcarriers. Importantly, this technique allows us to produce core-shell PC microbeads in a rapid and robust way, and the optical reflections of the PC microbeads appear highly stable to various external stimuli (e.g., temperature, pH value, and ionic strength) relying on the features of the CCAs core and protection of the polymer shell. Moreover, various probe biomolecules (e.g., proteins, antibodies, and so on) can be easily linked on the surface of the core-shell PC microbeads owing to the hydrophilic modification induced by the hydrolysis of BA on the microbead surface, enabling the multiplex biomolecular detection.


Subject(s)
Immunoglobulin G/analysis , Nanoparticles/chemistry , Optical Devices , Acrylates/chemistry , Acrylic Resins/chemistry , Animals , Centrifugation , Chickens , Colloids , Color , Crystallization , Humans , Microfluidics/methods , Microspheres , Polystyrenes/chemistry , Solutions , Swine
7.
BMC Genomics ; 13: 306, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22781587

ABSTRACT

BACKGROUND: A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. RESULTS: At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3' untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. CONCLUSIONS: There is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression.


Subject(s)
Chickens/growth & development , Chickens/genetics , Dwarfism/genetics , Gene Deletion , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Receptors, Somatotropin/genetics , 3' Untranslated Regions/genetics , Animals , Gene Expression Profiling , Genes, Reporter , Luciferases/metabolism , MicroRNAs/genetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Somatotropin/metabolism , Reproducibility of Results , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...