Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 137: 112422, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880024

ABSTRACT

The rising prevalence of autoimmune diseases poses a significant challenge to global public health. Continual exploration of natural compounds for effective treatments for autoimmune diseases is crucial. Berberine, a benzylisoquinoline alkaloid, is a bioactive component found in various medicinal plants, exhibiting diverse pharmacological properties. This review aims to consolidate the current understanding of berberine's pharmacological effects and mechanisms in addressing four autoimmune diseases: rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and psoriasis. Overall, as a traditional Chinese medicinal preparation, berberine shows promise as an effective and safe treatment for autoimmune diseases. However, further comprehensive studies, particularly clinical trials, are essential to elucidate additional mechanisms and molecular targets, as well as to assess the efficacy and safety of berberine in treating these autoimmune diseases.

2.
J Cancer ; 15(10): 3183-3198, 2024.
Article in English | MEDLINE | ID: mdl-38706897

ABSTRACT

Background: The metastasis of colorectal cancer (CRC) is one of the significant barriers impeding its treated consequence and bring about high mortality, less surgical resection rate and poor prognosis of CRC patients. PSAT1 is an enzyme involved in serine biosynthesis. The studies showed that PSAT1 plays the part of a crucial character in the regulation of tumor metastasis. And Epithelial-Mesenchymal Transition (EMT) is a process of cell reprogramming in which epithelialcells obtain mesenchymal phenotypes. It is a crucial course in promoting cell metastasis and the progression of malignant tumors. The relationship between PSAT1 and EMT in colorectal cancer, as well as the underlying molecular mechanisms, remains enigmatic and warrants thorough exploration. These findings suggest that PSAT1 may serve as a promising therapeutic target for mitigating colorectal cancer metastasis and holds the potential to emerge as a valuable prognostic biomarker in forthcoming research endeavors. Materials and Methods: Utilizing TCGA dataset in conjunction with clinical CRC specimens, our initial focus was directed towards an in-depth examination of PSAT1 expression within CRC, specifically exploring its potential correlation with the adverse prognostic outcomes experienced by patients. Furthermore, we conducted a comprehensive investigation into the regulatory influence exerted by PSAT1 on CRC through the utilization of siRNA knockdown techniques. In the realm of in vitro experimentation, we meticulously evaluated the impact of PSAT1 on various facets of CRC progression, including cell migration, invasion, proliferation, and colony formation. In order to elucidate the intricate effects in question, we adopted a multifaceted methodology that encompassed a range of assays and analyses. These included wound healing assays, transwell assays, utilization of the Cell Counting Kit-8 (CCK-8) assay, and colony formation assays. By employing this diverse array of investigative techniques, we were able to achieve a comprehensive comprehension of the multifaceted role that PSAT1 plays in the pathogenesis of colorectal cancer. This multifarious analysis greatly contributed to our in-depth understanding of the complex mechanisms at play in colorectal cancer pathogenesis. Using WB and PCR experiments, we found that PSAT1 has a role in regulating EMT development in CRC.In terms of mechanism, we found that PSAT1 affected EMT by Regulating Pl3K/AKT Signaling Pathway. Results: Our investigation revealed a noteworthy down-regulation of PSAT1 expression in CRC specimens. Importantly, this down-regulation exhibited a significant positive correlation with the unfavorable prognosis of patients afflicted with CRC. Functionally, our study showcased that the siRNA-mediated knockdown of PSAT1 markedly enhanced various key aspects of CRC pathogenesis in an in vitro setting. Specifically, this included a substantial promotion of CRC cell migration, invasion, proliferation, and colony formation. Moreover, the silencing of PSAT1 also demonstrated a substantial promotion of the EMT process. Intriguingly, our research unveiled a hitherto unexplored mechanism underlying the regulatory role of PSAT1 in CRC and EMT. We have established, for the first time, that PSAT1 exerts its influence by modulating the activation of the PI3K/AKT Signaling Pathway. This mechanistic insight provides a valuable contribution to the understanding of the molecular underpinnings of CRC progression and EMT induction mediated by PSAT1. Conclusions: In unison, our research findings shed light on the previously uncharted and significant role of the PSAT1/PI3K/AKT axis in the initiation of the EMT process in CRC. Furthermore, our discoveries introduce a novel biomarker with potential implications for the clinical diagnosis and treatment of CRC.

3.
Phytomedicine ; 120: 155064, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716035

ABSTRACT

BACKGROUND: Er Miao San (EMS) is an important herbal formula and a representative prescription for the treatment of the downwards flow of damp-heat syndrome. Clinical practice has proven that EMS can effectively treat rheumatoid arthritis (RA). Previous studies have demonstrated that EMS regulates the functions of T cells and dendritic cells and affects the polarization of macrophages. However, it is not clear whether the inhibitory effect of EMS on RA is related to the regulation of abnormal synovial activation and angiogenesis. PURPOSE: The aim of this study was to elucidate the effect and potential mechanisms of EMS on the abnormal activation and angiogenesis of fibroblast-like synoviocytes (FLSs) in RA. METHODS: The effect of EMS on rats with adjuvant arthritis (AA) and MH7A cells was examined by X-ray, haematoxylin-eosin (HE) staining, immunohistochemistry (IHC), ELISA and western blotting. Angiogenesis in AA rats was measured by a small animal ultrasound imaging system, immunofluorescence (IF) analysis and ELISA. An exchange between MH7A cells and HUVECs was induced using conditioned media that mimicked the microenvironment in vivo. CCK-8, western blotting, and scratch healing and Transwell migration assays were used to evaluate the effect of EMS on the Wnt/ß-catenin signaling pathway and angiogenesis in the inflammatory microenvironment of RA. RESULTS: Our results showed that EMS had a protective effect on AA rats. On the one hand, there was a decrease in paw swelling, the arthritis index, organ indices and proinflammatory factor levels, as well as relief of joint damage. On the other hand, blood flow, the number of immature blood vessels and proangiogenic factors were decreased. Furthermore, EMS reduced the expression of the Wnt/ß-catenin signaling pathway in the synovial tissue of AA rats and MH7A cells. In the inflammatory microenvonrment of RA, the results were consistent. CONCLUSION: This study demonstrated that EMS could protect against RA by inhibiting the abnormal activation and angiogenesis of FLSs, and the mechanism may be related to inhibiting the activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Rats , Wnt Signaling Pathway , Arthritis, Rheumatoid/drug therapy , Fibroblasts , Synovial Membrane , Arthritis, Experimental/drug therapy
4.
Mol Genet Genomic Med ; 11(4): e2132, 2023 04.
Article in English | MEDLINE | ID: mdl-36683525

ABSTRACT

BACKGROUND: B-Cell CLL/Lymphoma 11B (BCL11B) is a C2 H2 zinc finger transcription factor that has broad biological functions and is essential for the development of the immune system, neural system, cardiovascular system, dermis, and dentition. Variants of BCL11B have been found in patients with neurodevelopmental disorders and immunodeficiency. MATERIALS AND METHODS: Whole-exome sequencing (WES) and clinical examinations were performed to identify the etiology of our patient. A variant in the BCL11B gene, NM_138576.4: c.1206delG (p.Phe403Serfs*2) was found and led to frameshift truncation. RESULTS: We reported a male patient with developmental delay and cerebral palsy who carried the BCL11B variant. The detailed clinical features, such as brain structure and immune detection, were described and reviewed in comparison to previous patients. CONCLUSIONS: The BCL11B-related neurodevelopmental disorders are rare, and only 17 variants in 25 patients have been found to date. Our report expands the variants spectrum of BCL11B and increases the case of neurodevelopmental abnormalities.


Subject(s)
Cerebral Palsy , Developmental Disabilities , Genetic Variation , Repressor Proteins , Tumor Suppressor Proteins , Humans , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Exome Sequencing , Male , Cerebral Palsy/diagnostic imaging , Cerebral Palsy/genetics , Child, Preschool , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/genetics , Brain/diagnostic imaging
5.
J Ethnopharmacol ; 307: 116178, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36708884

ABSTRACT

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Er miao San (EMS) has been shown to have good anti-inflammatory effects and is widely used in the clinical treatment of RA. However, the exact mechanism is not completely understood. AIM OF THE STUDY: The aim of this study was to explore that EMS-containing serum affects M1/M2 polarization of macrophages and may be mediated through the microRNA (miRNA)-33/NLRP3 pathway, thereby elucidating the molecular mechanism of EMS treatment of RA. MATERIALS AND METHODS: We screened for safe concentrations of EMS-containing serum by using CCK-8 measurement. RAW264.7 cells were cultured with lipopolysaccharide (LPS) (100 ng/mL) and interferon-γ (20 ng/mL) for 24 h to induce M1-type macrophages. Adenosine triphosphate (ATP) (5 mM) was added in the last 30 min to activate NLRP3. The content of miR-33 was detected by RT‒qPCR after transfection of the miRNA-33 mimic. The protein expression levels of NLRP3, ASC, caspase-1, Inducible Nitric Oxide Synthase (iNOS) and Arginase-1 (Arg-1) were detected by Western blot. The contents of IL-1ß, IL-10, TNF-α, TGF-ß and IL-18 in serum and cell supernatant were determined by ELISA. The fluorescence intensity of CD86 and CD206 was detected by immunofluorescence. RESULTS: The results showed that EMS-containing serum promoted the protein expression level of Arg-1 and the secretion levels of TGF-ß and IL-10, inhibited the levels of iNOS, IL-1ß and TNF-α, and regulated the balance of pro-inflammatory factors and anti-inflammatory factors. RT‒qPCR results showed that EMS-containing serum could reduce the level of miRNA-33. EMS-containing serum could reduce the expression of NLRP3 inflammasome-related proteins and downregulate the expression levels of IL-1ß and IL-18. These results suggest that EMS exerts its effect on macrophage polarization through the miRNA-33/NLRP3 pathway. CONCLUSION: EMS-containing serum inhibits the activation of the NLRP3 inflammasome by downregulating miRNA-33, thus preventing the polarization of M1-type macrophages.


Subject(s)
Arthritis, Rheumatoid , MicroRNAs , Humans , Arthritis, Rheumatoid/metabolism , Inflammasomes/metabolism , Interleukin-10/metabolism , Interleukin-18/metabolism , Interleukin-18/pharmacology , Lipopolysaccharides/pharmacology , Macrophages , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Drugs, Chinese Herbal
6.
Front Pediatr ; 10: 1008251, 2022.
Article in English | MEDLINE | ID: mdl-36340727

ABSTRACT

Background: Pathogenic variants in the FIG4 gene have been described to be associated with a diverse spectrum of syndromes, such as autosomal recessive bilateral temporooccipital polymicrogyria (OMIM 612691), autosomal dominant amyotrophic lateral sclerosis-11 (ALS11; OMIM 612577), autosomal recessive Charcot-Marie-Tooth disease, type 4J (CMT4J; OMIM 611228), and autosomal recessive Yunis-Varon syndrome (YVS; OMIM 216340). Heterozygous FIG4 variants are responsible for ALS11 characterized by progressive muscular weakness, atrophy, and bulbar palsy. CMT4J is a disorder of peripheral nervous system defects mainly presenting with a highly variable onset of proximal and/or distal muscle weakness. YVS is a disorder of severe neurological involvement with central nervous system (CNS) dysfunction and extensive skeletal anomalies. Case Presentation: We reported two Chinese siblings born with a weakness in all limbs. They experienced rapidly progressive weakness in distal limbs. At the age of 6 years, the elder brother presented with severe scoliosis and cervical kyphosis. They both had global developmental delay and a CNS involvement with cognitive deficits and swallowing problems. Genetic screening in the patients' family for inherited diseases was recommended. Novel compound heterozygous variants in the FIG4 gene (c.2148delTinsAA and c.317A > G) were found by whole-exome sequencing in the patients. These variants were confirmed by Sanger sequencing in family members. Conclusions: Herein, we reported two Chinese male patients with CMT4J who presented with abnormal CNS features. CMT4J with CNS involvement has been very rarely reported. We hoped this study could expand the phenotypic and genetic spectrum of FIG4-related diseases. And we helped physicians to understand the genotype-phenotype correlation.

7.
Front Immunol ; 13: 978851, 2022.
Article in English | MEDLINE | ID: mdl-36059547

ABSTRACT

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs. However, the current SLE-related biomarkers still lack sufficient sensitivity, specificity and predictive power for clinical application. Thus, it is significant to explore new immune-related biomarkers for SLE diagnosis and development. Methods: We obtained seven SLE gene expression profile microarrays (GSE121239/11907/81622/65391/100163/45291/49454) from the GEO database. First, differentially expressed genes (DEGs) were screened using GEO2R, and SLE biomarkers were screened by performing WGCNA, Random Forest, SVM-REF, correlation with SLEDAI and differential gene analysis. Receiver operating characteristic curves (ROCs) and AUC values were used to determine the clinical value. The expression level of the biomarker was verified by RT‒qPCR. Subsequently, functional enrichment analysis was utilized to identify biomarker-associated pathways. ssGSEA, CIBERSORT, xCell and ImmuCellAI algorithms were applied to calculate the sample immune cell infiltration abundance. Single-cell data were analyzed for gene expression specificity in immune cells. Finally, the transcriptional regulatory network of the biomarker was constructed, and the corresponding therapeutic drugs were predicted. Results: Multiple algorithms were screened together for a unique marker gene, MX2, and expression analysis of multiple datasets revealed that MX2 was highly expressed in SLE compared to the normal group (all P < 0.05), with the same trend validated by RT‒qPCR (P = 0.026). Functional enrichment analysis identified the main pathway of MX2 promotion in SLE as the NOD-like receptor signaling pathway (NES=2.492, P < 0.001, etc.). Immuno-infiltration analysis showed that MX2 was closely associated with neutrophils, and single-cell and transcriptomic data revealed that MX2 was specifically expressed in neutrophils. The NOD-like receptor signaling pathway was also remarkably correlated with neutrophils (r >0.3, P < 0.001, etc.). Most of the MX2-related interacting proteins were associated with SLE, and potential transcription factors of MX2 and its related genes were also significantly associated with the immune response. Conclusion: Our study found that MX2 can serve as an immune-related biomarker for predicting the diagnosis and disease activity of SLE. It activates the NOD-like receptor signaling pathway and promotes neutrophil infiltration to aggravate SLE.


Subject(s)
Lupus Erythematosus, Systemic , Biomarkers , Gene Regulatory Networks , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/immunology , NLR Proteins/metabolism , Transcriptome
8.
Inflammopharmacology ; 30(4): 1179-1187, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35829941

ABSTRACT

NIMA-related kinase 7 (NEK7) is a serine/threonine kinase, which is the smallest one in mammalian NEK family. At present, many studies have reported that NEK7 has a physiological role in regulating the cell cycle and promoting the mitotic process of cells. In recent years, an increasing number of studies have proposed that NEK7 is involved in the activation of the NLRP3 inflammasome. Under normal conditions, NEK7 is in a low activity state, while under pathological conditions, NEK7 is abnormally expressed and therefore plays a key role in the progression of multiple tumors and chronic inflammatory diseases. This review will concentrate on the mechanism of NEK7 participates in the process of mitosis and regulates the activation of NLRP3 inflammasome, the aberrant expression of NEK7 in a variety of tumors and chronic inflammatory diseases, and some potential inhibitors, which may provide some new ideas for the treatment of diverse tumors and chronic inflammatory diseases associated with NEK7.


Subject(s)
Inflammasomes , Neoplasms , Animals , Humans , Inflammasomes/metabolism , Mammals/metabolism , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasms/drug therapy , Protein Serine-Threonine Kinases
9.
Pharm Biol ; 60(1): 846-853, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35608068

ABSTRACT

CONTEXT: Er Miao San (EMS) is a formulation that contains Atractylodis Rhizoma and Phellodendri Cortex in 1:1 ratio, and is commonly used to treat rheumatoid arthritis (RA) and other inflammatory diseases. OBJECTIVE: We investigated the mechanism of action and effects of EMS on peritoneal macrophage differentiation in a rat model of adjuvant arthritis (AA). MATERIALS AND METHODS: EMS (3, 1.5 and 0.75 g/kg; once daily) and methotrexate (0.5 mg/kg; once every 3 days) were administered orally from days 21 to 35 after immunisation. Paw swelling and arthritis index were measured; pathological changes in the ankle joint were observed using x-ray and haematoxylin eosin staining. The ratio of CD86/CD206 in macrophages was detected by flow cytometry. Examination of the miRNA-33/NLRP3 signalling pathway was examined by RT-qPCR and western blotting. The levels of cytokines in the serum and cell supernatants were tested by ELISA. RESULTS: EMS significantly reduced the AA index in rats (from 11.0 to 9.3) and pathological changes in the ankle joint (from 3.8 to 1.4). The ratio of CD86/CD206 was reduced, and polarisation to M1 improved (from 0.9 to 0.6) in macrophages of EMS-treated rats. EMS downregulated the miRNA-33/NLRP3 pathway. Furthermore, EMS treatment increased IL-10 and TGF-ß levels in the serum and supernatant of macrophages of AA rats and simultaneously decreased the levels of IL-1ß and TNF-α. DISCUSSION AND CONCLUSIONS: Our results suggest that EMS may reduce macrophage polarisation to the M1 inflammatory phenotype by downregulating the miRNA-33/NLRP3 pathway in AA rats. These findings may provide new insights into the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Macrophage Activation , Macrophages, Peritoneal/metabolism , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats
10.
Biol Pharm Bull ; 43(5): 788-800, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32132347

ABSTRACT

Tong-Qiao-Huo-Xue Decoction (TQHXD) is a classic traditional Chinese medicine prescription for treating cerebral ischemia. The purpose of this study was to investigate the effect of TQHXD on intervening inflammatory response of ischemic stroke by regulating intestinal flora and repairing the intestinal barrier. A rat model of cerebral ischemia was established using middle cerebral artery occlusion (MCAO) and behavioral scores were performed. Additionally, the high throughput 16S ribosomal DNA (rDNA) sequence of intestinal bacteria in fecal samples of rat was also carried out. Our results showed that TQHXD could change the main components of intestinal flora in stroke rats, and reduced the excessive increase of Bacteroidetes, and also regulated the abnormal changes of abundance of some flora as well. In addition, the intestinal epithelial barrier was damaged after stroke, allowing bacterial metabolites to enter the blood, while TQHXD had an improved effect on this phenomenon. Meanwhile, pathological changes in the brain tissue and infarct volume were also alleviated by TQHXD. Due to the disorder of the intestinal flora and the destruction of the barrier, the peripheral immune imbalance caused an inflammatory reaction. TQHXD improved the imbalance of T cells, and inhibited the inflammatory response. Finally, the therapeutic transplantation of fecal microbiota also improved the outcome of stroke in rats. Our presented results suggest that TQHXD may improve the gut microbiota disorder and its induced inflammatory response after stroke, which could be a new target and mechanism for the treatment of stroke.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Brain Ischemia/drug therapy , Drugs, Chinese Herbal/therapeutic use , Dysbiosis/drug therapy , Gastrointestinal Microbiome , Ischemic Stroke/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Brain/immunology , Brain/pathology , Brain Ischemia/immunology , Brain Ischemia/microbiology , Brain Ischemia/pathology , Drugs, Chinese Herbal/pharmacology , Dysbiosis/immunology , Dysbiosis/microbiology , Dysbiosis/pathology , Fecal Microbiota Transplantation , Feces/microbiology , Intestine, Small/drug effects , Intestine, Small/immunology , Intestine, Small/microbiology , Intraepithelial Lymphocytes/drug effects , Intraepithelial Lymphocytes/immunology , Ischemic Stroke/immunology , Ischemic Stroke/microbiology , Ischemic Stroke/pathology , Male , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
11.
Article in English | MEDLINE | ID: mdl-32148544

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the antiarthritic effects of different polar solvent extracts of Er Miao San (EMS) on model rats with adjuvant arthritis (AA) and screen the effective pats of EMS in the treatment of arthritis. METHODS: Four different polar solvent extracts of EMS such as petroleum ether (PE), methylene chloride (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-butanol (. RESULTS: Administration of EtOAc and CH2Cl2 parts remarkably inhibited the paw swelling, decreased the index of arthritis, decreased the body weight loss, and improved the changes of histopathology. Furthermore, the concentrations of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) were significantly lower, while the anti-inflammatory cytokine (IL-10) was remarkably higher compared with that in the model group. And the result of UHPLC analysis indicated that the effective parts of EMS contain berberine and atractylodin. CONCLUSIONS: EtOAc and CH2Cl2 are the effective parts of EMS that can improve arthritis. In particular, berberine and atractylodin may be responsible for the antiarthritic activity of EMS. This research provided pharmacological and chemical foundation for the application of EMS in treating rheumatoid arthritis (RA).

12.
Pharm Biol ; 58(1): 157-164, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32037930

ABSTRACT

Context: Er Miao San (EMS) is a traditional Chinese medicine composed of Atractylodis Rhizoma and Phellodendri Cortex in a 1:1 weight ratio. EMS has been used to treat rheumatism in China for many years.Objective: To evaluate the anti-arthritic activity of EMS extract on adjuvant-induced arthritis (AA) in Sprague-Dawley rats and to clarify its mechanisms of action.Materials and methods: EMS (0.75, 1.5 and 3 g/kg, once daily) was orally administered from day 18 after immunization to day 31. The effects of EMS on AA rats were evaluated by histopathological examination, paw swelling and polyarthritis index. The proliferation of fibroblast-like synoviocyte (FLS) and T cells was detected by CCK-8. The percentages of Th17 cells and Treg cells in splenocytes were determined by flow cytometry. Levels of cytokines in serum were detected by ELISA.Results: EMS treatment significantly decreased the paw volume (from 1.20 to 0.81), polyarthritis index (from 9.56 to 4.46) and alleviated ankle joint histopathology in AA rats. EMS inhibited the proliferation of FLS and T cells. Furthermore, EMS treatment decreased Th17 cells (from 4.62 to 2.08%) and increased Treg cells (from 2.77 to 4.75%) in splenocytes. The levels of IL-17A, TNF-α and IL-6 were remarkably decreased in the serum of EMS-treated rats, whereas the levels of IL-10 and TGF-ß1 were significantly increased.Conclusions: EMS exhibits anti-arthritic activity in the AA model by regulating the balance of cytokines and the ratio of Th17 and Treg cells. These insights may provide an experimental basis for the clinical treatment of RA.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Drugs, Chinese Herbal/pharmacology , Animals , Antirheumatic Agents/administration & dosage , Arthritis, Experimental/pathology , Cell Proliferation/drug effects , Cytokines/blood , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Freund's Adjuvant , Male , Rats , Rats, Sprague-Dawley , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism
13.
Med Sci Monit ; 25: 7958-7965, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31645050

ABSTRACT

BACKGROUND Er-Miao-San (EMS) is used in traditional Chinese medicine. This study aimed to investigate the effect of different elution fractions of EMS on acute inflammation induced by carrageenan in the rat paw and the possible mechanisms of action. MATERIAL AND METHODS Different aqueous fractions of EMS added to an AB-8 macroporous resin column and eluted with 0, 30%, 60%, and 90% ethanol. The content of berberine was evaluated by ultra-performance liquid chromatography (UPLC). Following injection of carrageenan and elution fractions of EMS into the rat paw, the volume of edema, levels of prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1ß, and IL-10 in the rat tissue were quantified by enzyme-linked immunosorbent assay (ELISA). Myeloperoxidase (MPO) activity and nitric oxide (NO) levels were measured by spectrophotometry. RESULTS The 60% and 90% ethanol elution fractions of EMS contained berberine, and both inhibited edema after carrageenan injection, with inhibitory rates of 31.04-40.86% and 48.84-52.18%, respectively, and with a significant reduction in MPO activity and NO production. The 60% ethanol elution fraction of EMS significantly decreased IL-1ß levels and increased IL-10 levels, and the 30%, 60%, and 90% ethanol EMS elution fractions considerably reduced the levels of TNF-alpha. The 60% and 90% ethanol EMS elution fractions significantly reduced PGE2 levels in the rat paw. CONCLUSIONS The 60% and 90% ethanol elution fractions of EMS had an anti-inflammatory effect following injection of carrageenan in the rat paw.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Edema/drug therapy , Inflammation/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Berberine/pharmacology , Carrageenan/pharmacology , Dinoprostone , Foot , Hindlimb , Interleukin-10 , Interleukin-1beta , Male , Medicine, Chinese Traditional , Nitric Oxide , Nitric Oxide Synthase/metabolism , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha
14.
Hematology ; 24(1): 544-551, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31315540

ABSTRACT

Objective: Immunoglobulin D (IgD) levels are often elevated in patients with autoimmune diseases. However, the oncogenic activities of IgD and IgD receptor (IgDR) in diffuse large B-cell lymphoma (DLBCL) have not been reported in detail. Therefore, we aimed to investigate the expression of IgD and IgDR in patients with DLBCL. Methods: Membrane IgD (mIgD) and IgDR expression in tissue samples was analyzed using IHC, mIgD and IgDR expression on peripheral blood mononuclear cells (PBMCs) was analyzed by FCM, and secreted IgD (sIgD) level was analyzed by ELISA. Fisher's exact test and Spearman correlation analysis were used to evaluate the relationship between IgD, IgDR, and clinical parameters. Results: The pathological lymph nodes of 34 patients with DLBCL were studied, and mIgD and IgDR expression was found in 16 and 19 patients. mIgD and IgDR expression was upregulated in patients with DLBCL and mIgD expression was significantly associated with IgDR expression. Further correlation analysis showed that mIgD expression was correlated with serum ß2-MG level and Hans algorithm as germinal center B (GCB), whereas IgDR expression correlated with serum LDH level, IPI score and GCB. ELISA showed that sIgD level was significantly increased in DLBCL patients and it correlated with serum ß2-MG and LDH levels. FCM showed that mIgD and IgDR expression in PBMCs of patients with DLBCL was significantly higher than that in healthy controls. Conclusion: Our findings suggest that overexpression of IgD and IgDR is an abnormal activation state in DLBCL.


Subject(s)
Gene Expression Regulation, Neoplastic , Immunoglobulin D/biosynthesis , Leukocytes, Mononuclear/chemistry , Receptors, Fc/biosynthesis , Case-Control Studies , Cell Line, Tumor , Cell Membrane/immunology , Female , Humans , Immunoglobulin D/analysis , Immunoglobulin D/genetics , L-Lactate Dehydrogenase/blood , Lymph Nodes/chemistry , Lymph Nodes/pathology , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Pseudolymphoma/blood , Pseudolymphoma/pathology , Receptors, Fc/analysis , Receptors, Fc/genetics , Up-Regulation , beta 2-Microglobulin/analysis
15.
Inflammopharmacology ; 27(5): 997-1010, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30771056

ABSTRACT

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. Dendritic cells (DCs) are one of the most powerful antigen-presenting cells, and they play an important role in RA pathogenesis. Prostaglandin E2 (PGE2) is a potent lipid mediator that can regulate the maturation and activation of DCs, but the molecular mechanisms have not been elucidated. In this study, both in vitro and in an RA rat model, we investigated the mechanisms involved by focusing on PGE2-mediated signaling and using a novel anti-inflammatory compound, paeoniflorin-6'-O-benzene sulfonate (CP-25). PGE2 combined with tumor necrosis factor-α promoted DC maturation and activation through EP4-cAMP signaling. Treatment with CP-25 increased the endocytic capacity of DCs induced by PGE2. CP-25 inhibited the potency of DCs induced by the EP4 receptor agonist, CAY10598, to stimulate allogeneic T cells. Consistent with these findings, the CAY10598-induced upregulation of DC surface activation markers and production of IL-23 was significantly inhibited by CP-25 in a concentration-dependent manner. In vivo administration of CP-25 alleviated adjuvant arthritis (AA) in rats through inhibition of DC maturation and activation. Our results indicate that PGE2-EP4-cAMP signal hyperfunction can lead to abnormal activation of DC functions, which correlates with the course of disease in AA rats and provides a possible treatment target. The inhibition of DC maturation and activation by CP-25 interference of the PGE2-EP4 pathway may significantly contribute to the immunoregulatory profile of CP-25 when used to treat RA and other immune cell-mediated disorders.


Subject(s)
Adjuvants, Immunologic/adverse effects , Arthritis, Experimental/drug therapy , Dendritic Cells/drug effects , Dinoprostone/metabolism , Glucosides/pharmacology , Monoterpenes/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction/drug effects , Adjuvants, Pharmaceutic/adverse effects , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cyclic AMP/metabolism , Dendritic Cells/metabolism , Male , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
16.
Acta Pharmacol Sin ; 40(8): 1029-1039, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30643209

ABSTRACT

Paeoniflorin-6'-O-benzene sulfonate (CP-25) is a novel compound derived from paeoniflorin that has been demonstrated to have therapeutic effects in a rat model of rheumatoid arthritis (RA). However, the underlying mechanism has not been elucidated to date. We explored this mechanism in the present study by treating rats with adjuvant arthritis (AA) with CP-25. We found that the membrane EP4 protein level was downregulated; whereas, GRK2 was upregulated, in fibroblast-like synoviocyte (FLS)s of AA rats. Prostaglandin (PGE)2 stimulated FLS proliferation and enhanced the membrane EP4 receptor protein level; the latter was reversed by the administration of an EP4 receptor agonist, whereas the membrane GRK2 protein level gradually increased. The changes in the EP4 receptor and GRK2 expression were enhanced by TNF-α, and the former was accompanied by an alteration in the cyclic (c)AMP level. The EP4 receptor agonist stimulation increased the association between GRK2 and the EP4 receptor. GRK2 knockdown abrogated the abnormalities in FLS proliferation. The CP-25 treatment (100 mg/kg) suppressed joint inflammation with an efficacy that was similar to that of methotrexate. This finding was associated with EP4 upregulation and GRK2 downregulation in FLSs. Thus, GRK2 plays an important role in the abnormal FLS proliferation observed in AA possibly by promoting EP4 receptor desensitization and decreasing the cAMP level. Our results demonstrate that CP-25 has therapeutic potential for the treatment of human RA via GRK2 regulation.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , G-Protein-Coupled Receptor Kinase 2/metabolism , Glucosides/therapeutic use , Monoterpenes/therapeutic use , Synoviocytes/drug effects , Animals , Ankle Joint/pathology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Cell Proliferation/drug effects , Dinoprostone/metabolism , G-Protein-Coupled Receptor Kinase 2/genetics , Gene Knockdown Techniques , Male , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP4 Subtype/metabolism
17.
Biomed Pharmacother ; 110: 834-843, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30557832

ABSTRACT

OBJECTIVE: CP-25 attenuates arthritis progression in animal models by inhibiting G protein-coupled receptor kinase 2 (GRK2) membrane expression. This study compared groups treated with high-dose methotrexate (MTX)/leflunomide (LEF) and CP-25 combined with low-dose MTX/LEF in an adjuvant-induced arthritis (AA) rat model and investigated possible mechanisms. METHODS: AA was induced in rats via complete Freund's adjuvant. Experimental groups were divided into a normal group; vehicle group; monotherapy groups, including CP-25 (50 mg/kg), MTX (0.25, 0.5 mg/kg), and LEF (5, 10 mg/kg); and CP-25 (50 mg/kg)-combined MTX (0.25 mg/kg)/LEF (5 mg/kg) groups. We measured cytokine levels, phosphorylation and protein expression, and interactions between proteins. The role of GRK2 on phosphorylated extracellular signal-regulated kinase (p-ERK) was determined via GRK2-siRNA using a high content imaging system. RESULTS: Therapeutic effects, including pathology and cytokine balance, were equivalent between the CP-25-combination groups and the high-dose MTX/LEF groups. P38, ERK, and c-Jun N-terminal kinase (JNK) activation in AA fibroblast-like synoviocytes (FLS) was reduced in the treatment groups; GRK2 expression was only inhibited in the CP-25 group. Interactions between GRK2 and p-ERK decreased in the vehicle group and were restored in the CP-25 group. GRK2 membrane expression and p-ERK nuclear expression increased in FLS pre-treated with tumour necrosis factor alpha and stimulated with prostaglandin E2. Nuclear expression of p-ERK increased in GRK2-siRNA FLS. CONCLUSION: Equivalent therapeutic effects were observed between CP-25-combination groups and high-dose MTX/LEF groups. CP-25 inhibited p-ERK by reducing the membrane expression of GRK2 in FLS from AA rats.


Subject(s)
Antirheumatic Agents/administration & dosage , Arthritis, Experimental/drug therapy , G-Protein-Coupled Receptor Kinase 2/metabolism , Glucosides/administration & dosage , Leflunomide/administration & dosage , Methotrexate/administration & dosage , Monoterpenes/administration & dosage , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Cells, Cultured , Disease Progression , Drug Therapy, Combination , G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , Male , Random Allocation , Rats , Rats, Sprague-Dawley
18.
Acta Pharmacol Sin ; 38(11): 1466-1474, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28770826

ABSTRACT

Immunoglobulin IgD might play an important role in autoimmune diseases, but the function of IgD has remained elusive, despite multiple attempts to define its biological function. Fibroblast-like synoviocytes (FLSs) are specialized cells of the synovium that play a key role in the pathogenesis of rheumatoid arthritis (RA). In this study we explored the possible roles of excessive IgD expression on the function of FLSs from RA patients (RA-FLSs). We showed that IgD Fc receptor (IgDR) was constitutively expressed on FLSs, and was significantly elevated in RA-FLSs compared with FLSs prepared from synovial tissues of healthy controls (HC-FLSs). Furthermore, IgDR was mainly detected on the cell surface and in the cytoplasm. We further detected the intrinsic binding affinity of IgD to IgDR on HC-FLSs with an equilibrium dissociation constant (KD) of 0.067 nmol/L. Incubation of RA-FLSs with IgD (1-10 µg/mL) for 48 h dose-dependently promoted the expression of IgDR, and stimulated the production of inflammatory cytokines and chemokines, such as IL-1ß, IL-6, monocyte chemotactic protein (MCP)-1, TNF-α and receptor activator of nuclear factor-κB ligand (RANKL), thus potentially contributing to IgD-IgDR crosslinking. Moreover, incubation with IgD (0.1-10 µg/mL) for 48 h dose-dependently enhanced viability for both HC-FLSs and RA-FLSs. Our results demonstrate that IgDR is expressed on RA-FLSs and contributes to the activation of FLSs, and suggest that IgD-IgDR is a potential novel immunotherapeutic target for the management of RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Receptors, Fc/metabolism , Synovial Membrane/metabolism , Synoviocytes/metabolism , Arthritis, Rheumatoid/immunology , Case-Control Studies , Cells, Cultured , Chemokines/metabolism , Cytokines/metabolism , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/immunology , Humans , Immunoglobulin D/metabolism , Immunoglobulin D/pharmacology , Receptors, Fc/drug effects , Receptors, Fc/immunology , Synovial Membrane/drug effects , Synovial Membrane/immunology , Synoviocytes/drug effects , Synoviocytes/immunology , Time Factors , Up-Regulation
19.
Sci Rep ; 6: 26239, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27184722

ABSTRACT

Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1ß, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-ß1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Experimental/immunology , Arthritis, Experimental/prevention & control , Glucosides/pharmacology , Monoterpenes/pharmacology , Animals , Arthritis, Experimental/pathology , Bone Remodeling/drug effects , Bone Remodeling/immunology , Bone and Bones/drug effects , Bone and Bones/immunology , Bone and Bones/pathology , Cytokines/biosynthesis , Cytokines/blood , Inflammation Mediators/metabolism , Joints/drug effects , Joints/immunology , Joints/pathology , Lymphocyte Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Male , Matrix Metalloproteinase 9/biosynthesis , Models, Immunological , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , RANK Ligand/biosynthesis , Rats , Rats, Inbred Lew , Spleen/drug effects , Spleen/immunology , Spleen/pathology , Th17 Cells/drug effects , Th17 Cells/immunology
20.
J Ethnopharmacol ; 189: 194-201, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27196292

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Total glucosides of paeony (TGP) is the first anti-inflammatory immune regulatory drug approved for the treatment of rheumatoid arthritis in China. A novel compound, paeoniflorin-6'-O-benzene sulfonate (code CP-25), comes from the structural modification of paeoniflorin (Pae), which is the effective active ingredient of TGP. The aim of the present study is to investigate the effect of CP-25 on adjuvant arthritis (AA) fibroblast-like synoviocytes (FLS) co-cultured with BAFF-activated CD4(+) T cells and the expression of BAFF-R in CD4(+) T cells. METHODS: The mRNA expression of BAFF and its receptors was assessed by qPCR. The expression of BAFF receptors in CD4(+) T cells was analyzed by flow cytometry. The effect of CP-25 on AA rats was evaluated by their joint histopathology. The cell culture growth of thymocytes and FLS was detected by cell counting kit (CCK-8). The concentrations of IL-1ß, TNF-α, and IL-6 were measured by Enzyme-linked immunosorbent assay (ELISA). RESULTS: The mRNA expression levels of BAFF and BAFF-R were enhanced in the mesenteric lymph nodes of AA rats, TACI expression was reduced, and BCMA had no change. The expression of BAFF-R in CD4(+) T cells was also enhanced. CP-25 alleviated the joint histopathology and decreased the expression of BAFF-R in CD4(+) T cells from AA rats in vivo. In vitro, CP-25 inhibited the abnormal cell culture growth of BAFF-stimulated thymocytes and FLS. In the co-culture system, IL-1ß, IL-6 and TNF-α production was enhanced by FLS co-cultured with BAFF-activated CD4(+) T cells. Moreover, BAFF-stimulated CD4(+) T cells promoted the cell culture growth of FLS. The addition of CP-25 decreased the expression of BAFF-R in CD4(+) T cells and inhibited the cell culture growth and cytokine secretion ability of FLS co-cultured with BAFF-activated CD4(+) T cells. CONCLUSION: The present study indicates that CP-25 may repress the cell culture growth and cytokine secretion ability of FLS, and its inhibitory effects might be associated with its ability to inhibit the expression of BAFF-R in CD4(+) T cells in a co-culture. These observations might provide a scientific basis for the development of new drugs for the treatment of autoimmune diseases by CP-25.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , B-Cell Activating Factor/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Fibroblasts/drug effects , Glucosides/pharmacology , Lymphocyte Activation/drug effects , Monoterpenes/pharmacology , Synovial Membrane/drug effects , Thymocytes/drug effects , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , B-Cell Activation Factor Receptor/drug effects , B-Cell Activation Factor Receptor/metabolism , B-Cell Activation Factor Receptor/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/pathology , Freund's Adjuvant , Inflammation Mediators/metabolism , Male , Paracrine Communication/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Thymocytes/immunology , Thymocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...