Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Colloid Interface Sci ; 331: 103235, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38908042

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has great potential for the analysis of molecules adsorbed on metals with rough surfaces or substrates with micro-/nanostructures. Plasmonic coupling between metal nanoparticles and the morphology of the rough metal surface can produce "hot spots" that enhance Raman scattering by adsorbed molecules, typically at micro- to nanomolar concentrations, although high enhancement factors can also facilitate single-molecule detection. This phenomenon is widely applicable for chemical analysis and sensing in various fields. In this review, the latest research progress on SERS micro-/nanosensors is evaluated, and the sensors are classified according to their individual functions. Furthermore, the design principles and working mechanisms of reported SERS-active micro-/nanostructured substrates are analyzed, and the design features adopted to overcome the difficulties associated with precision detection are explored. Finally, challenges and directions for future development in this field are discussed. This review serves as a design guide for novel SERS-active substrates.

2.
Crit Rev Biotechnol ; : 1-25, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797660

ABSTRACT

As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.

3.
Food Chem ; 439: 138102, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38100873

ABSTRACT

Ochratoxin A (OTA) is a potent carcinogen, and is among the most dangerous mycotoxins in agricultural products. In this study, an ultrasensitive dual-mode immunosensor was developed for naked-eye and fluorescence detection of OTA based on Ag-doped core-shell nanohybrids (Ag@CSNH). Complete antigen-labeled Ag@CSNH (CA-Ag@CSNH) were used as a competitive bind and dual-mode probe. The diffused doping structure of CA-Ag@CSNH provided improved stability, color and fluorescence quencher performance. Antibodies modified magnetic beads were used as a capture probe. The competitive binding between OTA and CA-Ag@CSNH produced both color change and fluorescence quenching. Ultraviolet and fluorescence intensitie correlated linearly with OTA concentration ranges of 0.03-3 ng/mL and 10-10000 pg/mL, and limits of detection of 0.0235 ng/mL and 0.9921 pg/mL, respectively. The practical applicability of proposed strategy was demonstrated by analysis of OTA in spiked corn, soybean and flour samples. This study offers a new insight on multi-mode platforms for various applications.


Subject(s)
Biosensing Techniques , Mycotoxins , Ochratoxins , Immunoassay , Ochratoxins/analysis , Mycotoxins/analysis , Limit of Detection
4.
Nanoscale ; 15(10): 5023-5035, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36790132

ABSTRACT

Effective and real-time detection of lactate (LA) content in human sweat has attracted considerable attention from researchers. In this work, a novel electrochemical paper-based analysis device (ePAD) was developed for the non-invasive detection of LA in sweat. The electrocatalytic properties of AuNP/Cu-TCPP(Fe) hybrid nanosheets, which were prepared by an optimised synthetic method, were studied by CV and EIS electrochemical methods for the first time and the working electrode can be fabricated using a drip coating method. The lactate sensor was optimised and validated for usability, adoptability and interpretability. To the best of our knowledge, this was the fastest, lowest detection line and widest linear range method reported to date for the detection of lactate. It achieved the detection limit of 0.91 pM and a linear range from 0.013 nM to 100 mM. The dual catalytic effects of the hybrid NSs shortened the detection time by nearly two times and enhanced the sensitivity approximately two times, an accuracy unmatched until now. Furthermore, this sensor was employed for LA analysis and validated by high performance liquid chromatography (HPLC). The ePAD shows superior biocompatibility, accuracy, and high sensitivity and can be easily manufactured. Hence, it is applicable for the long-term monitoring of sweat LA concentrations in point-of-care testing, athletic testing of athletes and military personnel and other subjects in different extreme environments.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Humans , Lactic Acid/analysis , Sweat/chemistry , Electrochemical Techniques/methods , Electrodes
5.
Crit Rev Food Sci Nutr ; 62(17): 4706-4725, 2022.
Article in English | MEDLINE | ID: mdl-33523717

ABSTRACT

Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.


Subject(s)
Food Safety , Metals, Heavy , Food Supply , Soil , Technology
6.
Crit Rev Anal Chem ; 52(6): 1408-1421, 2022.
Article in English | MEDLINE | ID: mdl-33611988

ABSTRACT

Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.


Subject(s)
Environmental Pollutants , Foodborne Diseases , Food Analysis , Food Safety/methods , Foodborne Diseases/prevention & control , Humans , Technology , United States
7.
Mikrochim Acta ; 188(9): 290, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34355262

ABSTRACT

A low cost and effective indirect competitive method is reported to detect five EDCs, 17-beta-estradiol (E2), estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), and nonylphenol (NP) simultaneously, based on suspension array technology (SAT). Five kinds of complete antigens (E2-BSA, E3-BSA, BPA-BSA, DES-BPA, NP-BSA) were coupled to different encoding microspheres using purpose-made solutions in our laboratory instead of commercially available amino coupling kits; the method was further optimized for determination and reducing  the cost. Encoding and signaling fluorescence of the particles are determined at 635/532 nm emission wavelengths. High-throughput curves of five EDCs were draw and the limit of detection (LOD) were between 0.0010 ng mL-1 ~ 0.0070 ng mL-1. Compared with traditional ELISA methods, the SAT exhibited better specificity and sensitivity. Experiments using spiked milk and tap water samples were also carried out, and the recovery was between 85 and 110%; the results also confirmed good repeatability and reproducibility. It illustrated great potential of the present strategy in the detection of EDCs in actual samples.


Subject(s)
Endocrine Disruptors/immunology , Immunoassay/methods , Humans
8.
Microb Pathog ; 142: 104045, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32035105

ABSTRACT

Peste des petits ruminants (PPR) is a highly contagious and fatal disease of small ruminants, particularly sheep and goats. This disease leads to high morbidity and mortality of small ruminants, thus resulting in devastating economic loss to the livestock industry globally. The severe disease impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organization for Animal Health (OIE) to develop a global strategy for the control and eradication of PPR by 2030. Over the past decades, the control of PPR is mainly achieved through vaccinating the animals with live-attenuated vaccines, e.g., rinderpest vaccines. As a closely related disease to PPR of large ruminants, rinderpest was eradicated in 2011 and its vaccines subsequently got banned in order to keep rinderpest-free zones. Consequently, it is desirable to develop homologous PPR vaccines to control the disease. The present review summarizes the objectives of PPR control and eradication by focusing on the homologous PPR vaccines.

9.
Biol Trace Elem Res ; 148(3): 331-5, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22447273

ABSTRACT

This study was conducted to examine the effects of copper on membrane potential and cytosolic free calcium in isolated primary chicken hepatocytes which were exposed to different concentration of Cu(2+) (0, 10, 50, 100 µM) or a mixture of Cu(2+) and vitamin C (50 and 50 µM, respectively). Viability, membrane potential, and cytosolic free Ca(2+) of monolayer cultured hepatocytes were investigated at the indicated time point. Results showed that, among the different concentrations of Cu(2+) exposure, the viability of hepatocytes treated with 100 µM Cu(2+) was the worst at the 12th and 24th hours. The effects of Cu(2+) on viability and proliferation were time and dose dependent. Further investigation indicated that Cu(2+) exposure significantly enhanced cytosolic free Ca(2+) in hepatocytes, compared to that in control group, at the 24th hour. Meanwhile, membrane potential was noticeably reduced in hepatocytes increasing concentration of Cu(2+). Taking these results together, we have shown that Cu(2+) can cause toxicity to primary chicken hepatocytes in excessive dose and the effect of Cu(2+) exposure on membrane potential is not site specific, which is probably mediated by the changes of cytosolic free Ca(2+).


Subject(s)
Calcium/metabolism , Copper/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Membrane Potentials/drug effects , Animals , Cells, Cultured , Chickens
SELECTION OF CITATIONS
SEARCH DETAIL
...