Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7025, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919261

ABSTRACT

Interacting electrons in one dimension (1D) are governed by the Luttinger liquid (LL) theory in which excitations are fractionalized. Can a LL-like state emerge in a 2D system as a stable zero-temperature phase? This question is crucial in the study of non-Fermi liquids. A recent experiment identified twisted bilayer tungsten ditelluride (tWTe2) as a 2D host of LL-like physics at a few kelvins. Here we report evidence for a 2D anisotropic LL state down to 50 mK, spontaneously formed in tWTe2 with a twist angle of ~ 3o. While the system is metallic-like and nearly isotropic above 2 K, a dramatically enhanced electronic anisotropy develops in the millikelvin regime. In the anisotropic phase, we observe characteristics of a 2D LL phase including a power-law across-wire conductance and a zero-bias dip in the along-wire differential resistance. Our results represent a step forward in the search for stable LL physics beyond 1D.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37823766

ABSTRACT

Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micrometer-sized two-dimensional van der Waals materials and devices. We demonstrate its performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe2 device and a multilayer 1T-TaS2 crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ∼43 mK and a sample electron temperature of ∼450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned.

3.
Nano Lett ; 23(15): 6868-6874, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37477415

ABSTRACT

Bulk Td-WTe2 is a semimetal, while its monolayer counterpart is a two-dimensional (2D) topological insulator. Recently, electronic transport resembling a Luttinger liquid state was found in twisted-bilayer WTe2 (tWTe2) with a twist angle of ∼5°. Despite the strong interest in 2D WTe2 systems, little experimental information is available about their intrinsic microstructure, leaving obstacles in modeling their physical properties. The monolayer, and consequently tWTe2, are highly air-sensitive, and therefore, probing their atomic structures is difficult. In this study, we develop a robust method for atomic-resolution visualization of monolayers and tWTe2 obtained through mechanical exfoliation and fabrication. We confirm the high crystalline quality of mechanically exfoliated WTe2 samples and observe that tWTe2 with twist angles of ∼5 and ∼2° retains its pristine moiré structure without substantial deformations or reconstructions. The results provide a structural foundation for future electronic modeling of monolayer and tWTe2 moiré lattices.

4.
Nature ; 605(7908): 57-62, 2022 05.
Article in English | MEDLINE | ID: mdl-35508779

ABSTRACT

The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin-charge separation1. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires2-13, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids2-6, quantum Hall states7-9, topological phases10,11 and quantum spin liquids12,13. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe2). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe2 hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe2 exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.

6.
Nature ; 589(7841): 225-229, 2021 01.
Article in English | MEDLINE | ID: mdl-33398136

ABSTRACT

In strongly correlated materials, quasiparticle excitations can carry fractional quantum numbers. An intriguing possibility is the formation of fractionalized, charge-neutral fermions-for example, spinons1 and fermionic excitons2,3-that result in neutral Fermi surfaces and Landau quantization4,5 in an insulator. Although previous experiments in quantum spin liquids1, topological Kondo insulators6-8 and quantum Hall systems3,9 have hinted at charge-neutral Fermi surfaces, evidence for their existence remains inconclusive. Here we report experimental observation of Landau quantization in a two-dimensional insulator, monolayer tungsten ditelluride (WTe2), a large-gap topological insulator10-13. Using a detection scheme that avoids edge contributions, we find large quantum oscillations in the material's magnetoresistance, with an onset field as small as about 0.5 tesla. Despite the huge resistance, the oscillation profile, which exhibits many periods, mimics the Shubnikov-de Haas oscillations in metals. At ultralow temperatures, the observed oscillations evolve into discrete peaks near 1.6 tesla, above which the Landau quantized regime is fully developed. Such a low onset field of quantization is comparable to the behaviour of high-mobility conventional two-dimensional electron gases. Our experiments call for further investigation of the unusual ground state of the WTe2 monolayer, including the influence of device components and the possible existence of mobile fermions and charge-neutral Fermi surfaces inside its insulating gap.

7.
Sci Adv ; 6(6): eaay6407, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083184

ABSTRACT

Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers.

8.
Int J Syst Evol Microbiol ; 64(Pt 8): 2637-2641, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24827705

ABSTRACT

A novel bacterial strain, NH131(T), was isolated from deep-sea sediment of South China Sea. Cells were strictly aerobic, Gram-stain negative, short rod-shaped and motile with a single lateral flagellum. Strain NH131(T) grew optimally at pH 6.5-7.0 and 25-30 °C. 16S rRNA gene sequence analysis revealed that strain NH131(T) belonged to the genus Devosia, sharing the highest sequence similarity with the type strain, Devosia geojensis BD-c194(T) (96.2%). The predominant fatty acids were C(18 : 1)ω7c, 11-methyl C(18 : 1)ω7c, C(18 : 0) and C(16 : 0). Ubiquinone 10 was the predominant ubiquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid, three glycolipids and two unknown lipids. The DNA G+C content of strain NH131(T) was 63.0 mol%. On the basis of the results of polyphasic identification, it is suggested that strain NH131(T) represents a novel species of the genus Devosia for which the name Devosia pacifica sp. nov. is proposed. The type strain is NH131(T) ( = JCM 19305(T) = KCTC 32437(T)).


Subject(s)
Geologic Sediments/microbiology , Hyphomicrobiaceae/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hyphomicrobiaceae/genetics , Hyphomicrobiaceae/isolation & purification , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...