Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 753, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272872

ABSTRACT

Aqueous zinc batteries possess intrinsic safety and cost-effectiveness, but dendrite growth and side reactions of zinc anodes hinder their practical application. Here, we propose the extended substrate screening strategy for stabilizing zinc anodes and verify its availability (dsubstrate: dZn(002) = 1: 1→dsubstrate: dZn(002)=n:1, n = 1, 2). From a series of calculated phyllosilicates satisfying dsubstrate ≈ 2dZn(002), we select vermiculite, which has the lowest lattice mismatch (0.38%) reported so far, as the model to confirm the effectiveness of "2dZn(002)" substrates for zinc anodes protection. Then, we develop a monolayer porous vermiculite through a large-scale and green preparation as a functional coating for zinc electrodes. Unique "planting Zn(002) seeds" mechanism for "2dZn(002)" substrates is revealed to induce the oriented growth of zinc deposits. Additionally, the coating effectively inhibits side reactions and promotes zinc ion transport. Consequently, the modified symmetric cells operate stably for over 300 h at a high current density of 50 mA cm-2. This work extends the substrate screening strategy and advances the understanding of zinc nucleation mechanism, paving the way for realizing high-rate and stable zinc-metal batteries.

2.
Adv Mater ; 36(2): e2309024, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37848387

ABSTRACT

The kinetics difference among multistep electrochemical processes leads to the accumulation of soluble polysulfides and thus shuttle effect in lithium-sulfur (Li-S) batteries. While the interaction between catalysts and representative species has been reported, the root of the kinetics difference, interaction change among redox reactions, remains unclear, which significantly impedes the catalysts design for Li-S batteries. Here, this work deciphers the interaction change among electrocatalytic sulfur reactions, using tungsten disulfide (WS2 ) a model system to demonstrate the efficiency of modifying electrocatalytic selectivity via dual-coordination design. Band structure engineering and orbital orientation control are combined to guide the design of WS2 with boron dopants and sulfur vacancies (B-WS2- x ), accurately modulating interaction with lithium and sulfur sites in polysulfide species for relatively higher interaction with short-chain polysulfides. The modified interaction trend is experimentally confirmed by distinguishing the kinetics of each electrochemical reaction step, indicating the effectiveness of the designed strategy. An Ah-level pouch cell with B-WS2- x delivers a gravimetric energy density of up to 417.6 Wh kg-1 with a low electrolyte/sulfur ratio of 3.6 µL mg-1 and negative/positive ratio of 1.2. This work presents a dual-coordination strategy for advancing evolutionarily catalytic activity, offering a rational strategy to develop effective catalysts for practical Li-S batteries.

3.
J Am Chem Soc ; 145(41): 22516-22526, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37788438

ABSTRACT

Lithium-sulfur (Li-S) batteries suffer from sluggish kinetics due to the poor conductivity of sulfur cathodes and polysulfide shutting. Current studies on sulfur redox catalysis mainly focus on the adsorption and catalytic conversion of lithium polysulfides but ignore the modulation of the electronic structure of the catalysts which involves spin-related charge transfer and orbital interactions. In this work, bimetallic phosphorus trisulfides embedded in Prussian blue analogue-derived nitrogen-doped hollow carbon nanocubes (FeCoPS3/NCs) were elaborately synthesized as a host to reveal the relationship between the catalytic activity and the spin state configuration for Li-S batteries. Orbital spin splitting in FeCoPS3 drives the electronic structure transition from low-spin to high-spin states, generating more unpaired electrons on the 3d orbit. Specifically, the nondegenerate orbitals involved in the high-spin configuration of FeCoPS3 result in the upshift of energy levels, generating more active electronic states. Such tailored electronic structure increases the charge transfer, influences the d-band center, and further modifies the adsorption energy with lithium polysulfides and the potential reaction pathways. Consequently, the cell with FeCoPS3/NC host exhibits an ultralow capacity decay of 0.037% per cycle over 1000 cycles. This study proposed a general strategy for sculpting geometric configurations to enable spin and orbital topology regulation in Li-S battery catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...