Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2259-2266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681390

ABSTRACT

For intensive aquaculture in freshwater ponds, microcystin (MC-LR) generated from cyanobacterial blooms is one of the bottlenecks for the healthy and sustainable development of shrimp aquaculture industry. In this study, we measured the MC-LR content in the hepatopancreas and muscles of Litopenaeus vannamei stressed by MC-LR, and analyzed protein expression in the hepatopancreas using DIA high-throughput proteomics technology. The results showed that MC-LR content in the hepatopancreas and muscles reached the highest at 1 h after MC-LR injection, which was (6.12±0.45) µg·kg-1 and (5.00±0.19) µg·kg-1, respectively. Then, it decreased gra-dually, with that in the hepatopancreas being significantly higher than in muscles. We identified 820 differential expressed proteins, including 586 up-regulated and 234 down-regulated ones. Results of bioinformatics analysis showed that MC-LR stress significantly affected immune-related pathways such as lysosome, RIG-Ⅰ receptor signals and interleukin-2. It also altered energy metabolisms including citrate cycle, metabolism of starch and sucrose, and interconversion of pentose and glucoronate, which in turn led to the disorder of carbohydrate metabolism. In addition, MC-LR significantly upregulated 19 cytoskeleton-related blood shadow proteins and damaged the hepatopancreas cytoskeleton. It was concluded that MC-LR mainly affected the physiological processes associated with immunity, energy metabolism, and cytoskeleton in the hepatopancreas of L. vannamei.


Subject(s)
Hepatopancreas , Penaeidae , Animals , Microcystins , Muscles , Aquaculture
2.
Front Genet ; 14: 1088191, 2023.
Article in English | MEDLINE | ID: mdl-36741320

ABSTRACT

Intensive shrimp farming is often threatened by microcystins Hepatopancreas is the primary target organ of MCs in shrimp. To investigate the response of hepatopancreas to acute MC-LR exposure, the expression profiles of RNA-seq and miRNA-seq in the hepatopancreas of L. vannamei were determined, and data integration analysis was performed at 72 h after MC-LR injection. The expression of 5 DEGs and three DEMs were detected by Quantitative PCR (qPCR). The results showed that the cumulative mortality rate of shrimp in MC-LR treatment group was 41.1%. A total of 1229 differentially expressed genes (844 up- and 385 down-regulated) and 86 differentially expressed miRNAs (40 up- and 46 down-regulated) were identified after MC-LR exposure. Functional analysis indicated that DEGs is mainly involved in the oxidative activity process in molecular functional categories, and proteasome was the most enriched KEGG pathway for mRNAs profile. According to the functional annotation of target genes of DEMs, protein binding was the most important term in the GO category, and protein processing in endoplasmic reticulum (ER) was the most enriched KEGG pathway. The regulatory network of miRNAs and DEGs involved in the pathway related to protein degradation in endoplasmic reticulum was constructed, and miR-181-5p regulated many genes in this pathway. The results of qPCR showed that there were significant differences in the expression of five DEGs and three DEMs, which might play an important role in the toxicity and hepatopancreas detoxification of MC-LR in shrimp. The results revealed that MC-LR exposure affected the degradation pathway of misfolded protein in ER of L. vannamei hepatopancreas, and miR-181-5p might play an important role in the effect of MC-LR on the degradation pathway of misfolded protein.

SELECTION OF CITATIONS
SEARCH DETAIL
...